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Objective of EMSP Research Project
Develop practical models for calculating thermodynamic
stabilities of components in complex waste glasses.

•Work with large number of components
•Easy to understand and use
•Reliable
•Extrapolatable and interpolatable (T, xi)
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Relevance
• Work will provide a thermochemical model for waste 

glass/melts 
• Model allows prediction of liquidus temperatures (TL) 

and formation of undesirable phases
• Model can be used to evaluate the driving force for 

glass corrosion in repository environments
• Can supply understanding necessary for waste form 

development with strong technical basis
• Will point the way toward studies of component 

association in melt which may significantly improve 
the understanding of waste glass melt chemistry
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Associate Species Approach Originally Applied 
by Hastie and Bonnell Simplifies Modeling

• The liquid/melt phase thermochemistry is modeled as an ideal 
solution of associate species
– e.g., Soda-alumina glass modeled as ideal solution of 

Na2O + AlNaO2 + Na2/3Al4/3O7/3 + Al2O3 ::  each with 2 non-oxygen atoms

• Accurately represents behavior of chemically complex systems
• Accurately predicts activity in glass phases (not stable phase)
• Logically allows estimation of thermodynamic values with an 

accuracy greater than that required for predicting useful 
engineering limits on activities in solutions

• Relatively easy for non-specialists in thermochemistry to 
understand and use
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Associate Species Approach For 
Modeling the Na2O-Al2O3 System

• Liquid associate species with well-known 
thermodynamic properties are derived by “melting” 
crystalline phases

AlNaO2(s) = AlNaO2(l)

∆G°fusion = 0 at Tfusion

∆H°fusion = Tfusion × ∆S°fusion

∆H°f(l) = ∆H°f(s) +∆H°fusion

∆S°f(l) = ∆S°f(s) +∆S°fusion
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Binary Solutions Ideal Mixing
• Ideal solutions (∆Hmix = 0)

∆Hmix = 0
∆Gmix = - T∆Smix

∆Smix = -R(XAlnXA + XBlnXB)
∆Gmix = RT(XAlnXA + XBlnXB)
G = Gsoln = Gpure + ∆Gmix

G = XAGA + XBGB + RT(XAlnXA + XBlnXB)
G = (1-XB)GA + XBGB + RT((1-XB)ln(1-XB) + XBlnXB)
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A Modified Associate Species Approach is 
Necessary To Accommodate Immiscible Liquids

• The presence of two immiscible liquids makes 
impossible the use of the pure ideal solution

• Positive interaction parameters are therefore used to 
model a two liquid phase system with identical 
constituents

• Free energy minimization routines determine the 
composition and quantity of each liquid

• Simple manual fitting to the phase diagram yields 
excellent results
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To Model A Complex System The First Step Is 
to Build Up the Model From Constituent Species

• Models for subsystems must be generated
• The models must be checked against established phase 
equilibria

• For glass, this means using the “solution” model for the 
liquid phase in calculations and determining if the 
liquidus (melting points) in the system reflect reality

• The ChemSage software allows us to quickly assess the 
phase equilibria and determine the “goodness” of the fit
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Current Database For Na2O-Al2O3-Cr2O3-
MnO-NiO-B2O3-SiO2
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Examples of Associate Species

• Liquids
– NaAlSiO4:2/3
– NaAlSi2O6:/2

• Crystalline Phases
– NaAlSiO4

• Solid Solutions
– Al2O3·Cr2O3, corrundum



5/6/2003 11

Recent Accomplishments
• Model Expansion

– Inclusion of CaO-containing systems
– Inclusion of spinel formers (Cr2O3, MnO, NiO)
– Development of ZrO2-containing systems

• Experimental
– Completion of liquidus measurements for a Na2O-

Al2O3-CaO-B2O3-SiO2 base system
– Measurement of Cr2O3 solubilities
– Expansion of database in spinel and zircon primary 

phase fields

• Initial Comparisons of Model and Experiment
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The Cr2O3-SiO2 Is An Example of a System 
Modeled With Positive Interaction Parameters 

to Reproduce the 2 Liquid Region
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Modeling the Cr2O3-Al2O3 System Was 
Challenging Due to the Solid Solutions and 

2-Solution Phase Regions
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Examples:  Computed Ternary Phase 
Diagrams for the Na2O-Cr2O3-Al2O3 System 

There are no published diagrams for this system
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Liquidus Curve for the Na2O-Cr2O3-Al2O3-B2O3-
SiO2 System as a Function of Cr2O3 Content
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Published and Computed Phase Diagrams for 
Al2O3-MnO and -SiO2 Are Comparable
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Published and Computed Phase Diagrams for 
Al2O3-NiO and NiO-SiO2 Show Good Agreement
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Computed Phase Diagram for the ZrO2-
Cr2O3 System Agrees With Existing Data

• No published phase diagram
• DTA analysis indicates 

eutectic at 1950oC and 0.5 mol 
fraction

• Liquid treated as ideal solution 
of end member liquids (ZrO2, 
CrO1.5)

• Cr2O3 melting point of 2432oC 
from SGTE compared to 
2330oC from JANAF
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ZrO2-Al2O3 System With No Solid Solution 
Matches Published Diagram  
Published

Lakiza & Lopato, J. Am. Ceram. Soc., 80 [4] 893 (1997)
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ZrO2-SiO2 System Well-Fits Published Diagram, 
With Corrected Transformation Temperature
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Experimental Data
• Initial focus on Al2O3-B2O3-CaO-Na2O-SiO2

system
– system forms the foundation of waste glass melts
– fabricated and tested roughly 50 glass 

compositions
– measured TL, CP, and primary phases

• Expanded to include multi-component melts in 
spinel and eskolaite primary phase fields
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Ternary 
Projections
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Spinel is One of the Phases Added
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It Can Pose a Problem
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Eskolaite vs. Spinel
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Cr2O3 Solubility 
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Comparison of Experimental and 
Computed Liquidus Temperatures and 

Primary Phase Formation

Issues that need resolution include the strong effect of boria on 
depressing the liquidus temperature and some discrepancy in 

primary phase formation 

Al2O3 Na2O SiO2 B2O3 M-TL,°C C-TL, °C Phase 
25.0 25.0 50.0 0.0 1510 1528 Carnegiete 
16.7 16.7 66.7 0.0 1124 1096 Nepheline 
12.5 12.5 75.0 0.0 1085 1118 ?? 
20.0 20.0 40.0 20.0 875 1329 Nepheline 
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Summary of Status
• The associate species approach for complex systems is simple, relatively 

accurate, and highly usable for describing
– Liquidus surfaces
– Conditions for crystalline phase formation
– Chemical activities of glass constituents

• We have developed a base model for waste glass systems that agrees 
reasonably with published phase diagrams

• The model has been extended in to include Cr2O3, MnO, and NiO
• The example of the effect of Cr2O3 content on TL demonstrates the strong 

effect of this constituent, and illustrates the difficulty experienced with Cr2O3
content in waste glass fabrication.

• It is expected that use of the model can aid in finding compositional-
temperature regimes that will avoid problematic Cr-containing phase 
precipitation.

• ZrO2 has been modeled with Cr2O3, SiO2, and Al2O3 by using single metal 
atom end members 

• When the spinel-forming systems are completed they will also support efforts 
to avoid spinel formation in melters, which can be problematic.
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Current Efforts
• Data collection

– Add additional major components to glass basic system 
(Fe, Zr, Li, etc.)

– Study solubility of minor components (additional work 
on Cr and begin S, Ni, Mn)

• Model development
– Attempt single metal oxide method for boron species
– Complete spinel/corrundum forming system ss and melt 

components model
– Add Zr containing phases
– Sulfur solubility

• Model validation and enhancement
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