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Objective of EMSP Research Project

Develop practical models for calculating thermodynamic
stabilities of components 1n complex waste glasses.

*Work with large number of components
*Easy to understand and use
*Reliable

Extrapolatable and interpolatable (T, x,)
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Relevance

 Work wi
glass/mel

| provide a thermochemical model for waste
S

* Model allows prediction of liquidus temperatures (T, )
and formation of undesirable phases

* Model can be used to evaluate the driving force for
glass corrosion 1n repository environments

e Can supply understanding necessary for waste form
development with strong technical basis

* Will point the way toward studies of component
association in melt which may significantly improve
the understanding of waste glass melt chemistry
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Associate Species Approach Originally Applied

5/6/2003

by Hastie and Bonnell Simplifies Modeling

The liquid/melt phase thermochemistry 1s modeled as an 1deal
solution of associate species

— e.g., Soda-alumina glass modeled as ideal solution of
Na,O + AINaO, + Na,;Al,;0,; + AL,O; :: each with 2 non-oxygen atoms

Accurately represents behavior of chemically complex systems
Accurately predicts activity in glass phases (not stable phase)

Logically allows estimation of thermodynamic values with an
accuracy greater than that required for predicting useful
engineering limits on activities in solutions

Relatively easy for non-specialists in thermochemistry to
understand and use
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Associate Species Approach For
Modeling the Na,0-Al,O; System

* Liquid associate species with well-known
thermodynamic properties are derived by “melting”
crystalline phases

AlNaO,, = AINaO,,
AG® =0 at Tpop
AHfysion = Thusion < AS®
AH®;; = AH, + AH°
AS®gpy = AS%, T AS®

fusion
fusion
fusion

fusion
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Binary Solutions Ideal Mixing

* Ideal solutions (AH_ . = 0)
AH_. =0
AG,. =-TAS_
AS .. =-R(X,InX, + X;zInX;)
AG, .. = RT(X,InX, + XylnXy)
G= Gsoln Gpure T AG i
G = X,G, + X;Gy + RT(X,InX,, + X5lnX,)
G = (1-X3)G, + XGy + RT((1-Xp)In(1-Xy) + XplnXy)
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A Modified Associate Species Approach is

Necessary To Accommodate Immiscible Liquids

5/6/2003

The presence of two immiscible liquids makes
impossible the use of the pure 1deal solution

Positive interaction parameters are therefore used to
model a two liquid phase system with 1dentical
constituents

Free energy minimization routines determine the
composition and quantity of each liquid

Simple manual fitting to the phase diagram yields
excellent results
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To Model A Complex System The First Step Is
to Build Up the Model From Constituent Species

* Models for subsystems must be generated

* The models must be checked against established phase
equilibria

* For glass, this means using the “solution” model for the

liquid phase 1n calculations and determining if the

liquidus (melting points) in the system reflect reality
* The ChemSage software allows us to quickly assess the
phase equilibria and determine the “goodness” of the fit
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Current Database For Na,0-Al,0,-Cr,0,-
MnO-NiO-B,0;-Si0,

Glass/Liquid Solution Phases Crystalline Phases

81,0, ALNiO,:2/3 Mullite: ALO;, Na,Si0,
B203 MHZSIO42/3 A168i2013 8102 (cris) NaZSi205
Cr,05 MnNiO, Si0, (trid) NaAlO,

. Na,Al,,O
Ni,O, Nepheline: Si0, (quar) azAllzow

Na
Mn.O . 231503y
2 NaAISI10, Na,0 NaAISiO,
AlS1,0,;:/4 NaAlSi,Oq NiO NaAlSi,O
NaBO, MnO ALNiO,
Na,B,0,:/3 Corrundum: Na;BO, Cr,NiO,
Na,O Cr,0, NaBO, AlenO4
NaAlO, Na,B,0, MnSiO,
Na,Al,0,:/3 NaB,0, Mn,SiO,
Na,SiO, :2/5 Na,BO,; Al,Mn,SiO,
Na,Si0,:2/3 NaB.O, AlMn;Si;0,,
NaAlSiO,:2/3
NaAlSi,04:/2 L2
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Examples of Associate Species

* Liquids
— NaAlSi10,:2/3
— NaAlS1,0:/2
* Crystalline Phases
— NaAlSi10,
 Solid Solutions

— Al,05-Cr,0;, corrundum
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Recent Accomplishments

* Model Expansion
— Inclusion of CaO-containing systems
— Inclusion of spinel formers (Cr,0;, MnO, Ni10O)
— Development of ZrO,-containing systems

* Experimental

— Completion of liquidus measurements for a Na,O-
Al,0,-Ca0-B,0;-S10, base system

— Measurement of Cr,0O; solubilities

— Expansion of database in spinel and zircon primary
phase fields

 Initial Comparisons of Model and Experiment
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The Cr,0;-Si0, Is An Example of a System
Modeled With Positive Interaction Parameters
to Reproduce the 2 Liquid Region

Published (No. 332) Computed Phase Diagram
T
_Liquid A Liquid B4 3000
| |
' N . . .
| Liquids A+ B ||‘ 26801 2 Liquids
' L)
2200° + %2265 +25
Chromic Oxide + Liquid B 23,6\0
o
o = Cr,0, + Liquid
Chromic Oxide 2040 |
+
Liquid A
1720
Cristobalite + Liquid Cr;0; + Cristobalite
'T~23o '720‘ 1400 | L I L 1 . I .
Cristobalite + Chromic Oxide 0 2 A ) o ® 1
Sio, Mol Fraction Cr,0, Cr,0,
Si0, Cra05 For the liquid G_,= X(1-X)[100,000-5T),

where X 1s the mol fraction of Si10,

The computed diagram reflects the newer melting pomt of Cr,0; of 2432°C
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Modeling the Cr,0;-Al,0; System Was
Challenging Due to the Solid Solutions and
2-Solution Phase Regions

2300

2275t 28’
22001 -
P 2400 -
5 Liquid
2100} 2200 .
2045:5°  Pyblished (No. 309) Liq. + (Cr,Al),0; ss
2000} __ 2000 +
o
1 1 A 4 1 1 1 '00 ;
0 20 40 60 80 5 1800
ALO, Mol % Cr0, £
Q (Cr,Al),0; ss
; T | T £ 1600
e =
B 1400 - Computed
1200 -
' Cr,0; ss + AlLL,O; ss
= 1000 ‘ T T T
0.0 0.2 0.4 0.6 0.8 1.0
; AlL,O Mol Fraction Chromia Cr,0,
600 - 2™3
Published (No) 9224) |
IR TR RS SE SN RS SR ~
20 40 60 80 .
Mol %
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Examples: Computed Ternary Phase
Diagrams for the Na,O-Cr,0;-Al,0; System

800°C 1900°C
Na,O Na,O

Cor: Corundum [(Cr,Al),O, ss]

Cor + NaAlO, + Na,O

(Cr,AI),0,

+ NaAl® Cor + NaAIO, + Na,Al; ;0.9 & (o4 NaAl,0,, + Cor + Liquid

Na,Al,,0,4

ALO,

< 04 03 0.2
mole fraction Cor + NaAl,0,,

mole fraction

There are no published diagrams for this system
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Liquidu§ Curve for the Na,0-Cr,0;-Al,0,-B,0;-
S10, System as a Function of Cr,0, Content

170 ?
1650
1600"
1550:
1500°
1450°
1400?
135"

T(°C)

130"

12507 0.091 mole Na,O
1200F 0.091 mole Al,O4

i 0.091 mole B,04
1150 0.727 mole SiO,

1100~

105Q

1000 L 1 L 1 L 1 L 1 L
0 0.002 0.004 0.006 0.008 0.01

Mole Cr,0,
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Published and Computed Phase Diagrams for
Al,O;-MnO and -SiO, Are Comparable

Computed Computed
2100 T T 1900 T T T T
1920 7 1760 i
17401 — 1620 B
3) 9
= =
1560 . 1480 4
1380r T 1340 .
|
1200 L L 1 1 1200 . . . . |
0 2 4 .6 .8 1 0 2 4 .6 .8 1
Published No. 92-004 Published No. 6411
[ ' | T | ' T I | I | [ | [ |
2000 —
- 1215°
Liquid 1200 2 Liguids
i 1710°
1835°%15% 1830° o o
1200 Lignid 1681
B 1600 Cristobalits + Lig. T
i)
= 1600
: Manganosite 14717 _
1% 0 +
Mnkly0 4 55 tagol— M G —
1400 1347 Tridyraite + Lig.
1315° (37.2%) (44%)
- 2557 1286° .
Ilanganosite . . .
| S S R B Fleppore | G | g B e
]
1208 20 a0 %0 20 100 12005 = o i 20 oo
A1203 Mol % B 10 TiTa E:?ncitﬁ W 5102
2 EYIVAD " -y
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Published and Computed Phase Diagrams for
Al,O;-NiO and NiO-SiO, Show Good Agreement

2200

2040t
1880
1720

1560 |

1400

2100

1900

Computed
0 2 4 6 .8
Published No. 2323
: I _ ‘ Liquid +
= Liqui/d/ ‘:\\Corundum j
7 AN i \ii‘/
K / Liquid \_.___ =]
\‘\\ Alickel Spinel I N
] | Liquid

jL “Liquid + NiOss

T“NiOss /

|7oo»’ Nicke! Spinel—

A I'Nicker spiner

,vNickeI Spinel]
+

L NiOss ’ Corundum —
-
Nickel Spinel |

|500r | —
| ' ]

| | I ‘

20 40 60 80
NiQ NiO-Al;05 Al

Mol.
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Computed Phase Diagram for the ZrQ,-
Cr,0; System Agrees With Existing Data

300

2500?\\\\\\\\\\\

1000~

500

0 2 4 .6 .8 1
Zr0, Mol Fraction Cr,0,4
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No published phase diagram

DTA analysis indicates
eutectic at 1950°C and 0.5 mol
fraction

Liquid treated as ideal solution
of end member liquids (ZrO,,
CrO, 5)

Cr,05 melting point of 2432°C
from SGTE compared to
2330°C from JANAF
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Zx0,-Al,0O; System With No Solid Solution
Matches Published Diagram

Published

Lakiza & Lopato, J. Am. Ceram. Soc., 80 [4] 893 (1997)

Computed

| T T I ' ! I ! | |
2710
2600 Py 2600
235706k Liguid n|
2200 N 2200¢
Ng':'a + Lig.
¥ )
& ; =
L (637] 1 1800 |
B T"EFUE + Mzﬂ_ﬁ
1400 .
1400
T-Iry + M-r0y
1700 11500 ]
M—Zelly M-Frly #+ A0
| 2y |
e I T B DR T 10000 oo
0 20 40 &0 BO 100 0 2 4 .6 .8 1
710, Mol % Al Zr0, Mol Fraction ALO;
* Solid solubility of Al,O5 in ZrO, ignored
* Ideal mixing of liquid ZrO, and AlO; ;5
\.2__.\-.‘ ,_!__.I_l "; Icq(.
G EMSP AL
5 / 6/ 2003 ‘nvironmental Management Science I'rugl";r;:":ﬂ.ﬂ




Zx0,-S10, System Well-Fits Published Diagram,
With Corrected Transformation Temperature

Published (No. 2400) Computed

2800 T T T T 1 T T 1 2800 — ‘ l —
Cub-210; Tet-Zr0, + Lig. . Liqud "7}
400+ t Liq. - L
2 2285 4 \/—\— Two Liquids 2400 /\
22500 N
2000}~ Tet-2r0, + Lig. - 20001
" Tet-2r0; + Crs \
16870 —h
1600
& 1600 1676° 14700 115104 + Crs o
Tet~2r0y <
T+ S0, T =
1200k=___1170° ISi0y +7d 1200 E
Mon-2r0, 8670 ]
+ - L
800 215i04 gl 2150, + H-Quortz 800
| | 57% , -
| | erSiO4 + L-lOuortz‘
0 1 1 | 400 L 1 . 1 1 . 1 .
G 2 40 60 80 ;%'; 0 2 4 6 8 1
20 Mol % i .
2 Zr0, Mol Fraction Si0,

* Liquid solution model has positive excess terms
» 710, (1) to (c) transformation temperature (2347°C)
. from SGTE
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Experimental Data

* Initial focus on Al,0;-B,0;-Ca0O-Na,0O-S10,
system
— system forms the foundation of waste glass melts

— fabricated and tested roughly 50 glass
compositions

— measured T, Cp, and primary phases

* Expanded to include multi-component melts 1n
spinel and eskolaite primary phase fields
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Si0»

Ternary
Projections
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Spinel 1s One of the Phases Added

r.

23



5/6/2003

It Can Pose a Problem
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Eskolaite vs. Spinel
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Cr,0, Solubility
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Comparison of Experimental and

Computed Liquidus Temperatures and

Primary Phase Formation

A1203 NazO SlOz B203 M-TL,OC C-TL, °C Phase
25.0 25.0 50.0 0.0 1510 1528 Carnegiete
16.7 16.7 | 66.7 0.0 1124 1096 Nepheline
12.5 12.5 75.0 0.0 1085 1118 7?
20.0 20.0 | 40.0 | 20.0 875 1329 Nepheline

Issues that need resolution include the strong effect of boria on

£y EMSP
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depressing the liquidus temperature and some discrepancy in
primary phase formation
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Summary of Status

The associate species approach for complex systems 1s simple, relatively
accurate, and highly usable for describing

— Liquidus surfaces
— Conditions for crystalline phase formation
— Chemical activities of glass constituents

We have developed a base model for waste glass systems that agrees
reasonably with published phase diagrams

The model has been extended 1n to include Cr,0O;, MnO, and N1O

The example of the effect of Cr,O; content on T; demonstrates the strong
effect of this constituent, and illustrates the difficulty experienced with Cr,0O,
content in waste glass fabrication.

It 1s expected that use of the model can aid in finding compositional-
temperature regimes that will avoid problematic Cr-containing phase
precipitation.

Zr0O, has been modeled with Cr,0;, Si0,, and Al,O; by using single metal
atom end members

When the spinel-forming systems are completed they will also support efforts
to avoid spinel formation in melters, which can be problematic.

&5 EMSP . 3
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Current Efforts

 Data collection

— Add additional major components to glass basic system
(Fe, Zr, L1, etc.)

— Study solubility of minor components (additional work
on Cr and begin S, N1, Mn)

* Model development
— Attempt single metal oxide method for boron species

— Complete spinel/corrundum forming system ss and melt
components model

— Add Zr containing phases
— Sulfur solubility

e Model validation and enhancement
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