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Objectives

Elucidate release mechanisms for sorbed trace metals
and their subsequent sequestration by co-precipitation in
calcite as induced by urea hydrolysis

Evaluate the influence of microbial calcite precipitation
on the partitioning/retention of strontium and other
divalent metals in groundwater at the field-scale

|dentify specific microbial community characteristics that
signify subsurface geochemical conditions that are
conducive to calcite precipitation
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90Strontium Contamination

INEEL groundwater, perched
water (INTEC)

« Upto84 pCiL1ina1.6 km?
groundwater plume

« Up to 320,000 pCi L1 in
perched water

Hanford soils, groundwater
(100N)

 Estin-ground inventory of 75
to 89 Ci

 Groundwater levels up to 6000
pCi L1

EPA Regulatory Limits for %Sr in
drinking water: 8 pCi L™
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Groundwater Remediation: Treating the
Solid Subsurface Media

« Even for contaminants

that are mobile in 1 I —
water, most of the 5 08 porosity = 20%, 30%, 40%
. . () - 3
contaminant mass is £ pg = 2.65 glcm
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Immobilization of 2°Sr in Calcite

e T,,for9Sris ~30 yr; 300 yr
Immobilization results in loss
of >99.9% original activity

» Co-precipitation of Srin
calcite at arid western sites is
compatible with the long term

subsurface biogeochemistry
(Log Sl for calcite in SRPA ~ 0.2 -0.5)

 Where practical, in situ
Immobilization is cost
effective, minimizes exposure,
and eliminates secondary
waste streams




In Situ Containment and
Stabilization Approach

 Alter in situ calcite precipitation kinetics to
iIncrease the rate of metal co-precipitation

(1-X)C82+ + XSFZ"' + 2HCO3- 9 Ca(1_ X)SFXCO3 + C02 + HzO

* Microbially hydrolyze urea to increase pH and
carbonate alkalinity

H,NCONH, + 2H,0 + H* > 2NH,* + HCO,"

* Desorb cations for co-precipitation in calcite
(M2* = Ca?*, Sr#Y)

>X,:M2* + 2NH,* > 2>X:NH,* + M2*



Application Concept

(NH,),CO +2H,0 + H*

_urease AP
I (1-x)Ca?" + ¢Sr>* + HCOy;-

ONH,* + HCO;




Results to Date

Demonstrated in laboratory and field the linkage
between urea hydrolysis and calcite
precipitation.

Observed that Sr is incorporated into calcite
precipitated by urea hydrolyzers, with higher
distribution coefficient than in abiotic systems.

Determined that urea hydrolyzers are ubiquitous
in the SRPA.

Developed PCR primers specific to bacterial
urease subunit C.



mg L mg L
Ca*"’ 70.1| INa® 25.8
Mg®*  109| |K 4.0
HCO; 69.8| |CI 124
NO, 52| (SO,  43.0
oH 8.15| |'CEC 15
T (°C) 14| [*Kdg, 5.0
'meq100g™") “mLg")

Model Aquifer System

6.67 liter total volume (15%
porosity)

1 liter (1 kg) of water

5.67 liter (15.3 kg) of geomedia
(CEC only reactivity)

2.70 kg liter? (grain density)
2.29 kg liter? (bulk density)

React 2 mmoles aqueous urea
Kinetics

— 1storder for urea hydrolysis

— 2" order chemical affinity for
calcite precipitation

Geochemist’'s Workbench
simulations



9.3
9.2

9.1

8.9 {f
. 8.8
a 87|

8.6
8.5
8.4
8.3
8.2

* pH and HCOj initially rises due to urea hydrolysis, then

« Ca?*initially rises due to exchange with NH,*, then

Batch System Calculations

(No Transport)
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Batch System Calculations
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» Hydrolysis of 2 mmol urea results in precipitation of
almost 2 mmole of calcite.

« Q/Krises rapidly as urea hydrolyzes faster than calcite
precipitates, Q/K falls as the two rates become
equivalent.



pH

Reactive Transport
(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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* High pH moves through system. Near ambient pH
values return in less than 18 months

« High [Ca?*] moves through system in early times as NH,*
exchanges for Ca?*. During later times low [Ca%*] moves
through system as Ca?* exchanges for NH,*
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Reactive Transport
(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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« Calcite precipitates through the entire regions and is
essentially complete within 2 years.

« Q/Kis elevated (> 30) during early times and slightly
depressed (but > 1) during later times. This condition
persists until NH,* is swept from the system (decades).



Future Project Activities

Task 1: Evaluate ureolytic activity of
subsurface microbial communities (INEEL).

Task 2: Conduct biotic and abiotic
experiments to develop coupled
chemical/transport models (Ul, UT).

Task 3: Conduct single well push-pull field
experiments (INEEL, Ul).

Apply research at a contaminated DOE site
(INTEC, Hanford’s 100 Area)
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Supplemental Information
Results to Date (1)

Urea Hydrolysis Rates UP-1

. Injected 164.8
Inject 7 gal of
njected 387 gal o gal of 48mM

0.00Q75% molasss
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 Demonstrated in laboratory and field the linkage
between urea hydrolysis and calcite
precipitation.



Supplemental Information
Results to Date (2)

Sr:Ca ratios in precipitates, estimated from solution data

Sample generated by: Estimated Sr:Ca
B. pasteurii + urea 0.047
Ammonium carbonate 0.034

Ammonium carbonate + B. pasteurii 0.027

* Observed that Sr is incorporated into calcite
precipitated by urea hydrolyzers, with higher
distribution coefficient than in abiotic systems



Supplemental Information
Results to Date (3)

Determined that urea
hydrolyzers are
ubiquitous in the SRPA.

Developed PCR primers
specific to bacterial
urease subunit C.

14
Developed C tracer Data from single well push-pull

techniq ue to estimate In experiment (4 reps from each time point).

Situ ureolysi s rate. A — pre urea and molasses addition; B —
during addition; C — post addition. The
PCR data suggests that following urea and
molasses addition the urease gene target
was detected more consistently and in
greater abundance.




Supplemental Information

Kinetic Model (1)
Urea Hydrolysis

H,NCONH, + 2H,0 — 2NH,* + CO,2

d [u]/ea] SRPA Isolates (22°C)
total __ 9.2
7 =—k  |urea] 2 .
8.8 - ———
o 84 ] ———
tdowl — 2k [urea] 82 .
dt 8
7.8
2— 7.6 ‘ ‘
d[CO3 ]z 0 10 20 30

ol =k [urea]
dt

Time (days)



Supplemental Information
Kinetic Model (2)

Calcite Precipitation

CaCO, — Ca?* + CO,2

d[ca lczte] NETPATH model of
McLing (1994) suggests
kcalczte (S 1)

At that ~0.3 mmole (net) of
calcite precipitate per liter
Q a .. d . ., of groundwater as it
S == = Ca”  CO;5 travels across the INEEL
K K site (~50 years)

eq
S—> 22



Supplemental Information
Batch System Calculations (1)

(No Transport)
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Some fluid components (mmoles)

Some sorbate components (log mmoles)

1.5

Supplemental Information
Batch System Calculations (2)
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Supplemental Information

Reactive Transport (1)
(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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Supplemental Information
Reactive Transport (2)

(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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Supplemental Information
Research Task 1
Evaluate ureolytic activity of subsurface microbial

communities (INEEL).

« Develop “C tracer technique to estimate in situ
ureolysis rate.

« Estimate numbers of urease positive organisms, e.g.
MPN-PCR, real time PCR.

« Correlate biomass to urease activity, using pure
cultures and mixed SRPA cultures (non-enriched)
and comparing to cell-free urease.

* Test urea and nutrient amendments in greater detail.

« Develop method to verify urea hydrolysis in field--
e.g., RT-PCR for urease mRNA.



Supplemental Information
Research Tasks 2

Conduct biotic and abiotic experiments to develop

coupled chemical/transport models (Ul, UT).

Continuously fed batch experiments containing solid

surfaces, urease (either intracellular or extracellular),

and urea to determine distribution coefficients (Sr in

calcite) as a function of precipitation rate.

— Precipitation rates will be controlled by controlling the rate of
urea introduction.

Column experiments to examine links between flow,

urea hydrolysis and calcite precipitation rates.

Development of mixed kinetic/equilibrium reaction
model based on Geochemist’'s Workbench and
HYDROBIOGEOCHEM.



Supplemental Information
Research Task 3

Conduct single well push-pull field experiments

(INEEL, UlI).

Injections of urea, carbon source and possibly other
nutrients. Also some experiments where urease is
also injected (potential option at sites where natural
ureolytic activity is low).

Install MLS with solid substrates in dialysis cells, for
post experiment recovery of precipitates.

* Apply microbiological and molecular techniques

developed in Task 1 (e.g., '*C, MPN-PCR, RT-PCR)
and other methods for assaying microbial community
(e.g., DGGE, FISH for specific organisms).

Use data to refine model started under Task 1.



