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Motivation
• Vadose-zone contamination can be a 
continuing source for groundwater 
contaminant plumes.
• Travel time in vadose zone important to 
risk assessment.

• Contaminant removal from vadose zone 
is technically difficult.

• Cleanup expected to account for half of 
total cost of subsurface remediation at 
DOE facilities.



Moisture-Dependent Reactivity 
Hypothesis

The reactivity of variably-saturated porous 
media is dependent on the moisture content 
of the medium and can be represented by a 
relatively simple function applicable over a 
range of scales, contaminants and media.
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Small-Scale Verification?
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Data from Lindenmeier et al., 1995



Larger-Scale Verification?

Sand

Silt loam

0

-1

-4

-3

-2

-5
0-1-4 -3 -2-5

Lo
g 

K
 (c

m
/m

in
)

Pressure head (m)

Sand

Silt loam

0

-1

-4

-3

-2

-5
0-1-4 -3 -2-5

Sand

Silt loam

Sand

Silt loam

0

-1

-4

-3

-2

-5

0

-1

-4

-3

-2

-5
0-1-4 -3 -2-5 0-1-4 -3 -2-5

Lo
g 

K
 (c

m
/m

in
)

Pressure head (m)



Research Questions
• What is the relationship between moisture 
content and reactivity?
• Can the relationship between moisture 
content and reactivity be separated into a 
“reaction term” and a “medium term”?
• Can the average reactivity of 
heterogeneous medium comprised of two 
or more distinct materials be estimated 
from the properties of those materials?



Research Questions
• Can the same general functional 
relationship between moisture content and 
reactivity obtained from small heterogeneities 
be applied to larger-scale heterogeneities and 
if so, how do the parameters scale?
• Does the reactivity of heterogeneous 
media comprised of two or more distinct 
materials exhibit anisotropic behavior and 
does the degree of anisotropy change as a 
function of moisture content?



Research Questions
• Are the reactivity/moisture content 
relationships obtained for idealized 
heterogeneous systems applicable to actual 
heterogeneous materials?



Experimental Methods
• One-Dimensional Experiments

Ostensibly homogeneous systems
Test materials to be used in 2D experiments

Use conservative (Cl-) and reactive (Sr2+, Zn2+,F-)
Obtain θ-ψ relationships
Obtain K-θ relationships
Obtain BTCs and determine reactivity- moisture 
content relationships

Use existing UFA  -- or 2m Geocentrifuge



Experimental Methods
• Two-Dimensional Experiments with 
idealized heterogeneities

Obviously heterogeneous systems
Use conservative (Cl-) and reactive (Sr2+, F-)

v. fine

course

fine

v. course

Material Key

ba c

Use two-meter centrifuge 



Experimental Methods
• Two-Dimensional Experiments with soil 
Sections

Use conservative (Cl-) and reactive (Sr2+, F-)
Use two-meter centrifuge

Use methods of Jardine et al., to obtain sections



Data Analysis
• Moment analysis
• CXTFIT (Toride et al., 1995)
• HYDRUS-1D (Modified by J. Simunek)
• HYDRUS-2D (Modified by J. Simunek)
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Darcy’s Law in Unsaturated Soil

Note: neglects hysteresis
steady flow
centrifuge neglects gravity component







 −−=

dz
dz

dz
dh)h(Kq







 −−= r
dr
dKq 2* )( ρωψψ



Theory
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Theory
Mechanical energy per unit mass or “fluid 
Potential”, φ, is
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Theory
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Summary
• The centrifuge advantage

– faster (* N)
–wider range of moisture

• The disadvantage
–capital equipment costs
–non-traditional experimental techniques

• θ = f(r,ω)
• acceleration effects on instruments



Summary (continued)

• Development of new numerical tools is necessary
– HYDRUS (1-D) with Jirka Simunek
– HYDRUS (2-D) with Jirka Simunek

• Theory should be reviewed


