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How did tank fluids react with sediment minerals?

Primary minerals dissolved;
Hyperalkaline secondary minerals formed

as colloids

and surface overgrowths.

Hypersaline

Al-rich
How much radioactivity is
immobilized in secondary minerals?

How has secondary mineralization
affected radionuclide distribution?




Background & Problem

SX-tank farm cores
@ Pervasive aluminosilicate ‘amorphous’ precipitates (Zachara et al., 2001)

@ Cs plumes controlled by sorption/desorption
(McKinley et al., 2001; Zachara et al., 2002; Steefel et al.)

@ Cr immobilization controlled by Fe(ll) release from primary minerals
(Zachara et al., 2003)

BX-tank farm cores
@ U(VI) uranophane family secondary precipitates (Catalano et al., 2002)

Numerous experiments simulating tank/sediment interaction
@ formation of zeolite phases both as colloids and overgrowths
(e.g., Bickmore et al., 2001; Wan; Chorover and others; Harsh, Flury and others)

Chemical components of the precipitates are derived from the sediments.
How, when, and where are the new phases nucleating?

How stable are the new phases?



Approach

@ Quantify reactions between tank fluids and Hanford sediment minerals.

@ Investigate role of bulk fluid compositions and radionuclide uptake.
# obtain kinetic data from monomineralic substrate experiments

¢ identify new surface precipitates

¢ determine thermodynamic data from same or similar experiments

* quantify radionuclide uptake in new surface precipitates
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Brief Review of Previous Results

Quartz dissolution — aluminosilicate precipitates

Biotite dissolution — Fe(ll) release
secondary precipitates

Brief Preview of Initial New Research

Quartz dissolution — aluminosilicate precipitates
with U(VI)-bearing BX tank simulants
with Cs-bearing SX tank simulants
role of surface roughness in nucleation kinetics



pH Dependence of Initial Dissolution Rates of Quartz
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% Rate without Al

Al Reduces Quartz Dissolution Rate

100 -
80 -
60 0.
o >8i-OH® + (AI(OH), - Nar)
o0 | 0.001 m Al ’
S ._ - _ + +
0 0.01 m Al Sl O'Arl(OH)3 LRIt
g 10 11 12 13
in situ pH
( » Slower rate at lower pH and higher [AI(OH),]
model

_ » Aluminosilicate species observed at high pH
consistent { (enhanced by ion-pairing; McCormick et al., J. Phys. Chem., 1989)

with | . Precipitated aluminosilicate gels at pH 9 with Al:Na = 1:1
. (Milliken, Discuss. Faraday Soc., 1950)




Rate = Rate, 4., (1 —9)
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“Nitrate” Cancrinite
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Biotite

2+
Fe“*; o58

Unreacted Biotite

50 to 100 um

I:e3+0.058 Ti0.183)(A|0.9898i2.966010)[(OH)1 .709F0.283C|0.008]

~ Reduces Cr(V1)0,2

Pre-conditioned Biotite
pH 8, 340 h



—
ul

Transient and Steady-state
Biotite Dissolution
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log moles released

Transient release (~100 hours)
10-100X greater than steady-state release
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Jit¢?  Effect of Na* on Biotite
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Log Ry (Mol Bt m2 s1)
Normalized to O,,(OH), Units

Biotite Dissolution Rates
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Secondary phase
formation on
reacted biotite
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log sum Me aqueous species

Possible Secondary Phase Solubilities




Radionuclide

Incorporation
(ex: apatite)
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U coverage = #*°U activity/(surface area x detection efficiency)

@ Si surface-barrier detector
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Natural growth Mechanically Dissolved
surface Scratched surface
surface
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Overgrowths on quartz initiated as Al-rich films on
rough areas of particle surface.

Planned Experiments

Overgrowth kinetic experiments using single crystal
quartz with characterized roughening
+ radionuclide (U(VI) and Cs) incorporation.




