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Objectives

• Determine the weathering behavior of clays and 
Hanford Sediments under the intense geochemical 
conditions imposed near-field by the waste leachate, 
including neoformation of secondary solids.

• Investigate long-term kinetics of Cs, Sr and I uptake
during reaction and establish the extent to which they are 
coupled to solid phase dissolution and precipitation. 

• Determine changes in the lability/siting of contaminants
in the weathering systems over time.  
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Time Series of Si Release from Specimen 
Clays  (mmol kg-1)
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Uptake of Cs and Sr During Mineral Transformation
KGa-2 (mmol kg-1 clay)
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Uptake of Cs and Sr During Mineral Transformation
SWy-2 (mmol kg-1 clay)
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Solid-State NMR to Study Weathered Clay Samples
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27Al MAS NMR Spectra of Kaolinite Transformation
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Aluminum Coordination in Kaolinite and 
Zeolite Structures
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Cs0 and Sr0 Rate Constant, k (d-1)   Reaction half-life, t1/2 (d)

(mol kg-1) Cs sorption 27Al NMR Cs sorption 27Al NMR

10-5 4.09 x 10-3 3.51 x 10-3 169 197

10-4 1.93 x 10-3 3.42 x 10-3 359 203

10-3 0.99 x 10-3 1.97 x 10-3 699 351

Tabulated below are first order rate constants (d-1) and half-
lives (d) for Cs sorption and for kaolinite weathering in STWL.  
Weathering rates were calculated from ratio of [AlIV/( AlIV+ 
AlVI)] MAS NMR peak intensities of reacted solids.  All 
regressions resulted in R2 > 0.8 and p < 0.01.

Quantitative Rate Calculations



Advanced Solid-State NMR Approaches:  MQMAS

L. Frydman and J. S. Harwood, J. Am. Chem. Soc. 117, 5367 (1995)
- correlation of isotropic dimension with MAS dimension
- spinning at 54.74o

- averages away second-order quadrupolar effects

see J. M. Egan and K. T. Mueller, J. Phys. Chem. B 104, 9580 (2000)
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27Al MQMAS of Weathered Kaolinite Sample



Variable-Field NMR of 27Al:  Resolution for Quantification
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29Si MAS NMR Studies of Kaolinite Transformation
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27Al and 29Si MAS NMR Studies of
Kaolinite Transformation:  Acidic Oxalate Wash
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Advanced Solid-State NMR Approaches:
One- and Two-Dimensional HETCOR

• Heteronuclear correlation experiments: use couplings between the 
nuclei to probe interatomic interactions

selectivity

(proximity or motion)

editing
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One-Dimensional Heteronuclear Correlation Experiments:
Spectral Editing Based on Dipolar Interactions



Heteronuclear Correlation NMR Studies:
29Si/133Cs REDOR Experiments

CsCHASi spin echo (So)

Si with Cs dephasing (Sf)



Principal Findings from 1999 
EMSP Project

• Caustic waste-soil weathering reactions result in Si release 
and neoformation of “secondary” solids that sequester Cs 
and Sr into increasingly recalcitrant forms.

• The secondary solids comprise zeolites chabazite, nitrate 
sodalite and nitrate cancrinite, depending upon system 
composition and duration of reaction.  

• Specimen clay systems differ in their dissolution kinetics 
and, therefore, the rate of secondary solid formation.

• Specimen clays provide a baseline for interpretation of 
weathering processes occurring in heterogeneous sediment 
samples.  



OH- Promoted Dissolution of Layer Silicates in STWL
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Sr EXAFS Data:  Change in Sr-Containing Environments



Primary Objectives of the Renewal 
2003 EMSP Project

• Measure the kinetics of coupled clay transformation 
reactions and radionuclide sorption along an expanded 
gradient in solution chemical conditions and soil 
saturation.  

• Determine the molecular nature of contaminant binding 
sites in neo-formed precipitates and reacted 
clays/sediments by conjunctive use of microscopy and 
spectroscopy. 

• Determine the rate and extent of contaminant release by 
desorption, dissolution and dispersion of weathered clays 
at circumneutral pH (i.e., establish the stability of sorbent-
sorbate interactions after removal of the waste leachate 
source).  
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