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Objectives

e Determine the weathering behavior of clays and
Hanford Sediments under the intense geochemical
conditions imposed near-field by the waste leachate,
including neoformation of secondary solids.

* Investigate long-term Kinetics of Cs, Sr and I uptake
during reaction and establish the extent to which they are
coupled to solid phase dissolution and precipitation.

e Determine changes in the lability/siting of contaminants
in the weathering systems over time.



Kinetic Studies: Coupled Mineral Transformation

sediments with STWL Mg(NO,),
in suspension from

Oto2yr
2 M (NaNO,),

0.05 M Al(OH),,
oH 13.8 (NaOH),

and Contaminant Sorption

™~

Dissolved
(<0.02 um)

/V

Colloidal

" — (0.02:2.0 um)

v
-
LA e e ]
o
Ry L BT
T ol s 3 o
SRR i g e el 2
L] --'\.1;----'|i'|r.".'-.. ]
T i et ]
- e B>
':',.-“ o, D BT 4
& £ Y et
11_.---IIIl p o 5‘1{_..-.
< -] - s,
. =
=

Solid
Particulate
v a4
Dissolution
exchange kinetics

'

NH *-oxalate

(pH 3)
extraction

S

Cs & Sr=10%to 103

Solution
Phase

Analysis
Cs, Sr, Al,
Si, Fe, pH

—

Solid Phase
Analysis
XRD
SEM/EDX
TEM

FTIR

NMR
EXAFS



Time Series of Si Release from Specimen
Clays (mmol kg)
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Kaolinite: Dissolution and Precipitation of Si
(mmol kg clay)
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Kaolinite: Dissolution and Precipitation of Al
(mmol kg clay)
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XRD Patterns of Kaolinite as a Function of Reaction Time
Cs/Sr=10°"M Cs/Sr=104M Cs/Sr=103M
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Radionuclide Sorption Kinetics (KGa-2)
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Uptake of Cs and Sr During Mineral Transformation
KGa-2 (mmol kg clay)
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Uptake of Cs and Sr During Mineral Transformation
SWy-2 (mmol kg clay)
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Weathering behavior of kaolinite was studied in batch
systems under geochemical conditions characteristic of
tank waste released to the vadose zone at the Hanford Site,
WA (0.05 M Alr, 2M Nat, 1M NO;~, pH ~14, Cs* and
Srét present as co-contaminants). Time series experiments
were conducted from 0 to 369 d. with initial Cs* and

Srét concentrations ranging from 107 to 10~ M. Dissolution
of kaolinite increased soluble Si and Al to maximum
levels at 7 d {Cs and Sr concentrations of 10~% and 10~*

important U.S. Department of Energy sites (g.g., Hanford,
WA; Savannah River, GA; Oak Ridge, TN) is composed of
solutions that are unique in having extremely high pH and
ionic strength (/. Contaminant sorption (defined here as
uptake to the solid phase) under these conditions B likely to
be affected by mineral transformation reactions that are not
well-known.

The effect of alkaline solutions on kaolinite transformation
hasbeen investigated previously (8— 1 2. For example, Bauer
etal. (12, examinedkaolinite weathering over several months
at 35 and 80 °C in 0.1-4 M KOH solutions and at solid—
solution ratios ranging from 1:80 to 1:240. Theyreportedthe
formation of illite, followed by Kl-zeolite and phillipsite and
then precipitation of the stable product K-feldspar. The
aqueous chemistry of caustic tank waste leachate is domi-
nated by Na*, Al(OH),~, and NO;~ with variable quantities
of the radionuclides '¥Cs and %5r. The effects of these
constituents on kaolinite transformation are unknown.
Furthermore, most other studies of kaolinite dissolution have
focused on initial dissolution rates at pH < 12and conditions
far from equilibrium with respect to solid-phase products
(13—20. As a result, there 15 a lack of information on
dissolution and precipitation reactions in agqueous systems
representative of leaking tank waste that interacts with
contaminated sediments at several 1.5, DOE sites.

In thisstudy, macroscopic and spectroscopic approaches
were integrated to investigate kaolinite weathering and
contaminant uptake under conditions representative of waste
leachate at the Hanford Site, WA,



Solid-State NMR to Study Weathered Clay Samples
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2TAl MAS NMR Spectra of Kaolinite Transformation
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Aluminum Coordination in Kaolinite and
Zeolite Structures
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Al Coordination Ratio from 2’Al MAS NMR
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Mass Loss of Kaolinite as Measured by TGA
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Quantitative Rate Calculations

Tabulated below are first order rate constants (d-!) and half-
lives (d) for Cs sorption and for kaolinite weathering in STWL.
Weathering rates were calculated from ratio of [AI'Y/( AI'V+
AIYH] MAS NMR peak intensities of reacted solids. All
regressions resulted in R? > 0.8 and p < 0.01.

Cs, and Sr, Rate Constant, k (d!) Reaction half-life, t, , (d)

(mol kg) Cs sorption 274l NMR Cs sorption “*’Al NMR
10 4.09 x 1073 3.51x 103 169 197
104 1.93x 103 3.42x 103 359 203

103 0.99x 1073 1.97x 1073 699 351



Advanced Solid-State NMR Approaches: MQMAS

L. Frydman and J. S. Harwood, J. Am. Chem. Soc. 117, 5367 (1995)
- correlation of isotropic dimension with MAS dimension

- spinning at 54.74°

- averages away second-order quadrupolar effects

23Na MQMAS from a Weathered
Aluminoborosilicate Glass
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see J. M. Egan and K. T. Mueller, J. Phys. Chem. B 104, 9580 (2000)



Triple Quamtum Dimension

2TAl MQMAS of Weathered Kaolinite Sample
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Variable-Field NMR of 2’Al: Resolution for Quantification
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29Si MAS NMR Studies of Kaolinite Transformation

[Cs]=[St]=10° M [Cs]=[Str] = 104 M [Cs]=[Sr] = 10° M

B
o2

Frequency (ppm from TMS)



27TAl and 2°Si MAS NMR Studies of

Kaolinite Transformation: Acidic Oxalate Wash
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Advanced Solid-State NMR Approaches:
One- and Two-Dimensional HETCOR

Heteronuclear correlation experiments: use couplings between the
nuclei to probe interatomic interactions
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Variable-Contact Cross-Polarization Experiments

Variation of contact time for
long radiofrequency pulses
provides discrimination of
different sources of polarization
transfer.
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Variable-Contact Cross-Polarization Experiments
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One-Dimensional Heteronuclear Correlation Experiments:
Spectral Editing Based on Dipolar Interactions
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Heteronuclear Correlation NMR Studies:
29Si/133Cs REDOR Experiments
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Principal Findings from 1999
EMSP Project

Caustic waste-soil weathering reactions result in Si release
and neoformation of “secondary” solids that sequester Cs
and Sr into increasingly recalcitrant forms.

The secondary solids comprise zeolites chabazite, nitrate
sodalite and nitrate cancrinite, depending upon system
composition and duration of reaction.

Specimen clay systems differ in their dissolution kinetics
and, therefore, the rate of secondary solid formation.

Specimen clays provide a baseline for interpretation of
weathering processes occurring in heterogeneous sediment
samples.



OH- Promoted Dissolution of Layer Silicates in STWL
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Sr EXAFS Data: Change in Sr-Containing Environments
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Primary Objectives of the Renewal
2003 EMSP Project

* Measure the kinetics of coupled clay transformation
reactions and radionuclide sorption along an expanded
gradient in solution chemical conditions and soil
saturation.

* Determine the molecular nature of contaminant binding
sites in neo-formed precipitates and reacted
clays/sediments by conjunctive use of microscopy and
spectroscopy.

« Determine the rate and extent of contaminant release by
desorption, dissolution and dispersion of weathered clays
at circumneutral pH (i.e., establish the stability of sorbent-
sorbate interactions after removal of the waste leachate
source).
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