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Goals

Provide conceptual and quantitative information on far-field 
contaminant transport rates and mechanisms in the Hanford 
vadose zone.



Objectives

• Quantify hydrologic transport as a function of water content 

– Preferential flow, immobile water, matrix diffusion

• Quantify the rates and mechanisms of contaminant – sediment 

interactions

– Adsorption, oxidation/reduction, chelate-contaminant dissociation, 

precipitation

• Quantify coupled hydrologic and geochemical processes

– Isolation of hydrologic flowpaths to distinct sedimentary mineralogies

as water content decreases



• Hydrology
– Intact sediment cores

– Lithologic heterogeneities and sedimentary features

– Variable water content

• Geochemistry: Co(II)EDTA2-, U(VI), Sr, Cs, Cr(VI)
– High resolution surface spectroscopic techniques

– Equilibrium and kinetic adsorption isotherms, miscible displacement

• Coupled processes
− Unsaturated reactive transport experiments in intact cores

− Long-term and quantitative (months, years)

Approach



Collection of undisturbed cores



Experimental apparatus



Hanford formation

Sh(f)
Sr



Upper Silt (US)

Lower Sand/Silt (LSS)

Cold Creek Unit

XPL 28X
0.19 mm



Cross-bedded

Horizontally-bedded

Ringold Formation



Quantifying hydrologic transport

PIPES
De = 5.2 x 10-10 m2 s-1

pKa = <3, 6.8

PFBA
De = 7.8 x 10-10 m2 s-1

pKa = 2.7

Br-

De = 18.7 x 10-10 m2 s-1

Decreasing size ⇒ Increasing rate of diffusion

1,4 Piperazinebis
(ethanesulfonic acid) Pentafluorobenzoic

acid
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Finger flow and perched immobile water 
during unsaturated flow in cross-bedded laminated media
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Minimal preferential flow, minimal development of immobile 
water due to secondary fillings of pores with calcite



Conceptual hydrologic models
RINGOLD 

LAMINATED FINES
HANFORD 

LAMINATED FINES

CALICHE

5 cm
0.19 mm
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Determining surface-mediated reaction mechanisms

• X-ray adsorption spectroscopy
• Mossbauer spectroscopy
• Micro-Raman spectroscopy

APS



In-situ, Real-time Spectroscopic 
and Microscopic Characterization

flow • Identification of surface phases and principal 
sorbents under dynamic-flow conditions.

• Mineral grains mounted within flow-cell equipped 
with optically transparent window permitting 
microscopic and micro-spectroscopic examination

Phase-contrast image of 
quartz grains with deposits of 
amorphous iron oxide

Elemental distribution with x-
ray fluorescence imaging

Bacterial distribution using 
epifluorescence and laser 
confocal microscopy

Surface phases and sorbents
identified with Raman and X-
ray absorption spectroscopies
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• MnO2 oxidant
• Passivation of MnO2 from the 
development of Mn2O3 layer

60COBALT MOBILITY
In Situ Speciation of Co and Mn under Hydrodynamic Conditions using XAS



Implications

• Physical hydrology
− Multiple conceptual models that are dependent upon the arrangement 

of media pore structure, grain size, and water content.

− Identification of preferential finger flow, immobile water, local-scale 
perching, and lateral spreading

− Isolation of flowpaths to specific mineralogies (e.g., clays, Fe- and 
Mn-oxides, biotite) in sediments with decreasing water content.

• Coupled hydrology and geochemistry
− Transport through intact sediments is complex, resulting in 

“accelerated” (Co(III)EDTA-) or “retarded” transport (U, Sr).

− Importance of physical and/or geochemical nonequilibrium.



Future Work

• Obtain additional intact cores of Hanford from the ERDF.
• Initiation of Cr(VI) investigation, continuation of U and Co-

chelate (EDTA, HEDTA) experiments.
• Continuation of novel surface techniques to determine 

mechanisms governing chelated metal, U, and Cr(VI) adsorption 
and transformation.

• Dye-trace and dissembly of intact cores to ground-truth coupled 
processes. 

• Modeling coupled processes in intact cores.
– Multipermeability hydrologic processes
– Multicomponent, multiprocess fate and transport


