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Background

In-situ characterization of actinides and technetium compounds in high level
wastes is essential to achieve shorter turn-around times for analytical results or
to facilitate tank closure after retrieval. Currently, techniques for monitoring
and characterizing radionuclides rely primarily on

liquid scintillation counting,
ICP-MS, and
some limited use of the spectrofluorimetry.

These techniques require chemical handling, e.g., the use of complexing
media, scintillation cocktails, phosphoric acids, in order to enhance signals.
Furthermore, only fluorescent radionuclides [UO,2*, Cm(lll), Am(lll)] can be
detected by the last technique. Many environmentally-important
radionuclides such as plutonium, neptunium, and technetium species
have no strong fluorescence signals and therefore can not be
characterized via fluorescence spectroscopy.
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Objectives

SERS Spectra of U0,
Dai, S, et. al Appl. Spectrosc., 1996, 50

% To develop a scientific basis for a
new methodology to sensitively i R
detect and characterize )
radlonuclldes such as actinyl |ons

UO,%* NpO and PuO,2*) -
an TCO via SERS

% To incorporate molecular
reco nltlon into sol-gel SERS
substrates to further improve Y
selectivity and sensitivity = o

This proposed research serves to fill this information gap through the development of a
novel surface-enhanced Raman scattering (SERS) spectroscopy to selectively and
sensitively monitor and characterize the chemical speciation of radionuclides at trace
levels. The SERS technique permits both of these measurements to be made
simultaneously, and results in significant improvement over current methods in
reducing time of analysis, cost, and sample manipulation.
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Four principal sets of results are expected
from this research:

& A new and highly-sensitive methodology for radionuclide monitoring
and characterization at the molecular level will be developed via SERS.
No inherent chemical handling, such as the addition of chelating agents,
is required in this method.

& Structural information concerning speciation and chemical states of
important radionuclides (e.g., TcO,, UO,?*, NpO,*, and PuO,?*)
obtained via SERS will provide essential information to cost-effectively
remediate and separate the radionuclides from contaminated media.

& This research will lead to a new generation of SERS substrates and a
combinatorial chemical methodology for developing and evaluating
chemical sensors.

& The interface of our SERS substrates with fiberoptic instrumentation for
remote in-situ sensing will be conducted to gain understanding of
speciation of radionuclides under real environmental conditions.
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Why SERS? 0%

|
t%>The ma {orlt of the radionuclide species 0
rel evan OE environmenta
problems eX|st in forms of distinct
covalent molecular |gqroups under most
environmental conaitions
Uranium, neptunlum and plutonium are present under most
enwronmenta conditions as monomeric or polymeric actinyl
(MO.,2* or MO,*) species. The oxygen-actinide’bond in this group
is known to b@ stron Ia{)covalent in nature. For instance, the

bonding energ in uranyl ion is very close to that of the
carbon- oxygen bon in C

» Denning, R.G., “Electronic Structure and Bonding in Actinyl lons,” in
Structure and Bonding, Springer-Verlag:Berlin, Vol 79, 1992, p216.

& Large Raman cross sections

L, Extremely Sensitive Molecular
spectroscopy

> Single molecule detection
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Problems With Conventional

SERS Substrates

& Colloidal Solution

% Silver SERS Films

% No Molecular
Recognition
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Two Strategies

L, SERS films prepared by Sol-gel
methodologies

> Isolated Ag particles
» Functionalities
» Potential combinatorial search

L, SERS films prepared by coating Ag on
nanostructured materials

»> Stabilities
» Functionalities
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Sol-Gel Preparation of Materials

Acid-Catalyzed Hydrolysis
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Why Sol-Gel Materials?

Processing -

Hybrid Organic-Inorganic Materials

- Inexpensive
- Transparent
- Compatible with

Inorganic and
Organic Dopants
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Materials Derived From Sol-Gel Processing

Optical Fiber

Xerogel
Si(OMe),, catalyst
—-
Solvent H0 \

Aerogel

Thin-Film Coating

Brinker, C. J and Scherer, G. W., “Sol-gel Science: the Physics and Chemistry of Sol-Gel
Processing”, Academic Press: Boston, 1990.
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Synthesis Protocol

Precursors (e.g. Alkoxides; Ag(NO3))
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A Dopant Molecule or Particle
Entrapped in Sol-Gel Glasses

Stabilities

‘Porosities
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SERS Sol-Gel Films
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Generation of SERS Film Library

Screening of SERS Films

SERS Library
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Stability of SERS Sol-Gel Film
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Time Dependence of Raman SERS Spectrum for Benzoic Acid
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SERS spectrum of (a) uranyl (8.5%x10¢ M)
adsorbed onto a silver-doped sol-gel
substrate (b) substrate in the absence of

uranyl.
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Logarithmic calibration graph of uranyl
adsorbed on to silver-doped sol-gel

substrate using SERS band of 710 cm.
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UV- visible absorption spectrum of
silver-doped sol-gel substrate
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SEM micrographs of silver-doped sol-gel
substrates: image (a) obtained by field
emission scanning electron microscope
and image (b) by scanning transmission
electron microscope.
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SERS spectrum of NpO,*

] — B: Np 0.08 uCi

Counts

T T T T T T T
400 500 600 700 800 900 1000

Raman shift / cm™

Oak Ridge National Laboratory
U.S. Department of Energy UT-BATTELLE




SERS spectrum of pertechnetate
anion
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Bifunctional sol-gel precursors
for selective and high-affinity

SERS films
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(a) S. Dai, Chem. Euro. J., 2001, 7, 755. (b) M. C. Burleigh, S.
Dai, E. W. Hagaman, and J. S. Lin Chem. Mater. 2001, 13,

2537.(c) Z. T. Zhang and S. Dai J. Am. Chem. Soc. 2001, 123,

9204. (d) S. Dai, M. C. Burleigh, Y. H. Ju, H. J. Gao, J. S. Lin ,
S. J. Pennycook , C. E. Barnes, and Z. L. Xue, J. Am. Chem.
Soc. 2000, 122, 992.
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Silica Nanoparticles by Stober
Synthesis

SEM Image
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Influence of mass thickness of Ag film
on SERS response. The diameter of the
silica bead is 650 nm, the benzoic acid

tested is 102 M.
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SEM image of single bead surface Deposition time of Ag / min

Oak Ridge National Laboratory
U.S. Department of Energy UT-BATTELLE




Zeolite SERS Film Prepared by
LTA Nanoparticles
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SERS Spectra of Uranyl lons on
Ag-Coated LTA Zeolite Films
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Weak SERS Effect of Benzoic Acid
on Ag-Coated LTA Zeolite Film
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SERS Spectra of Uranyl lons on
Ag-Coated Zeolite-X Films
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Weak SERS Effect of Benzoic Acid
on Ag-Coated Zeolite-X Film
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Summary

L We have developed Ag-doped sol-gel films
tailored for SERS measurement of
radionuclides.

% The new sol-gel SERS substrates are very
stable.

& We have successfully developed Ag-coated
zeolite and silica nanoparticles for SERS
applications.

% The measurements of SERS spectra for
actinides (detection limit ~ 103 M and 1l
sample) and potential wastes have been
demonstrated.
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