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Key Question:

What are the appropriate = ===
measurement and ¥ '
modeling scales,

and methods required

to accurately represent

flow and transport

processes in
heterogeneous,
unsaturated porous
media like these? =




Objectives

e Develop improved methods (software tools)
for parameterizing water flow and solute
transport models for field-scale applications
In heterogeneous, variably saturated porous
media

e Evaluate predictive accuracy and uncertainty
associated with using different data types for
model parameterization (hard and soft data),
by comparing model simulations with
observed data from well-controlled field
experiments



Outline

e Field Experiment
« Parameterization Method

e Observed and Simulated Results



Field Experiment

Conducted In inter-bedded sands and silts at
the Hanford Site in SE Washington state in
June-July 2000

5 weekly subsurface injections of ~4000 L of
water, each applied over a period of 4 — 7 hr
at depth of 4.3 m

Bromide and other tracers added in third
Injection

Water plumes monitored to depth of 18 m
using neutron probe in 32 access tubes
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Parameterization Method

Step 1. Estimate scale-mean hydraulic parameters

Step 2. Geostatistical analyses and conditional
simulation of field-measured water content and
porosity distributions on a fine grid

Step 3. Infer scaling factors and hydraulic
parameters at fine grid scale from the saturation
distribution and scale-mean parameters

Step 4. Generate upscaled, effective model
parameters for a coarse numerical model grid




Similar Media Scaling
(adapted from Miller & Miller, 1956, J. Appl. Phys.)




Step 1. Estimate scale-mean
parameters

Miller & Miller Generalized
*h(g)=ah(q) * h (S) =a,h(S)

cK(q)=K(q)/a2 °*K(©)=K(©OS)/as?
* a,=T1(ap)




Scale-mean parameters




Unscaled and scaled pressure-saturation data
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Relationship between a,, and a, scaling factors
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Step 2. Geostatistics and
Conditional Simulation

o Spherical variogram models with 2 nested
structures were fit to field-measured water
content and porosity data

» 30 realizations generated on 3.4 million node
grid fora 20 m x 20 m x 12 m domain using
SGSIM (conditioned on measured values)

o E-type (expected value) estimates used for
parameterization on 22,000 node model grid
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SGSIM E-type estimates of water content
Note: carved at X=10and Y = 10
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Step 3. Estimate scaling factors
and hydraulic parameters

log h’

a,=h"/ Novg(2)
a, =f(ay)

he=h./a,
Ks = Ks* ak2

log S



Step 4. Upscaling

 Volume averaging (initial water content and
porosity) and

* Upscaling of hydraulic parameters with volume-
averaged initial water contents and porosities,
and weighted arithmetic and harmonic
averaging of the fine grid block K values or

 Solve N- K(NH) = 0 for each coarse grid block
with the discretization and parameters for the
fine grid blocks contained within each coarse

grid block
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Rigorous method
N-K(NH) =0

h,




Water Content Distributions
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Initial water content distributions, May 5, 2000
Observed Simulated
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Water contents 1 day after 1st injection, June 2, 2000
Observed Simulated
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Water contents 1 day after 2"d injection, June 9, 2000
Observed Simulated

Horizontal Position [m] Horizontal Position



Water contents 1 day after 34 injection, June 16, 2000
Observed Simulated

Horizontal Positicon [m] Horizontal Positicon [m]



Water contents 1 day after 4th injection, June 23, 2000
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Water contents 33 days after 5" injection, July 31, 2000
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Preliminary Conclusions

 Both hard and soft data are needed for
accurate parameterization of vadose
zone flow and transport models for
field-scale applications in highly
heterogeneous sediments

 Parameterization methods and
modeling framework described here
look promising



Ongoing Work

* Implementation and testing of rigorous,
saturation-dependent, K tensor
upscaling scheme

 Development and evaluation of site-
specific pedo-transfer functions

« Uncertainty and sensitivity analyses
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