DSOM[®] - Decision Support for Operations and Maintenance – Application to a USMC Base Centralized Energy System

Presented to:

IDEA 95th Annual Conference

29 June 2004

Dick Meador Program Manager Pacific Northwest National Laboratory

Battelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Discussion Topics

Parris Island Background
Central Energy Co-generation Plant
Weapons Area Steam Plant
Energy Management and Control System
Wastewater Treatment SCADA System
Savings Summary

Background

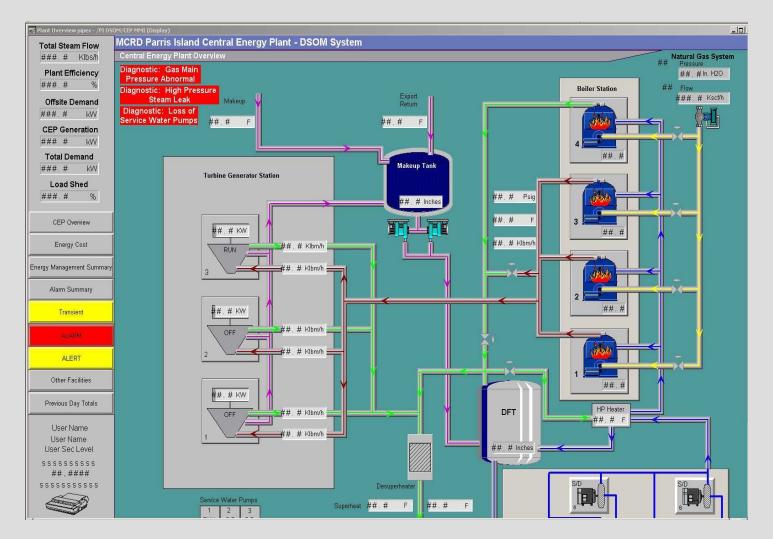
- USMC Facilities aging
- Various control systems could not talk to each other
- PNNL requested to provide latest technology solution
- PNNL designed technology applications from a facility-wide perspective
- Built in diagnostics and energy conservation recommendations

Central Energy Plant

- Three 400 psig steam boilers can provide steam to supply three 1-kW extraction steam turbine generators plus 125 psig site steam loads
- One 125 psig boiler to supply site steam when generation is not required
- Natural Gas fired with #2 oil backup
- Costly penalties for exceeding electrical demand peak for more than 15 minutes

DSOM

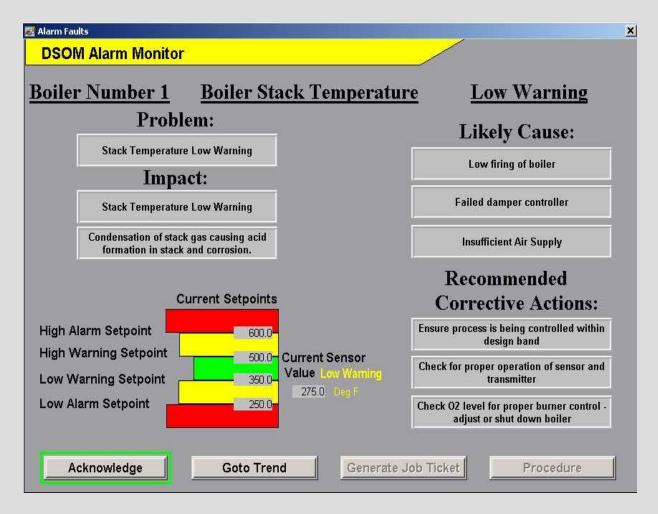
Tells operator :


- What current condition is
- What current condition should be
- What to do about it
- Provides information for approximately 40 diagnostics
- Provides similar information for all alert and alarm conditions

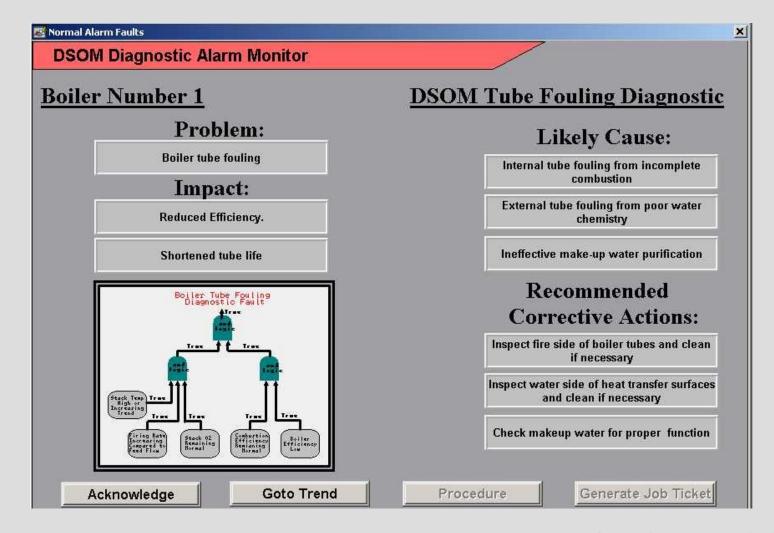
DSOM – CEP Asset Manager

Provides operator guidance on:

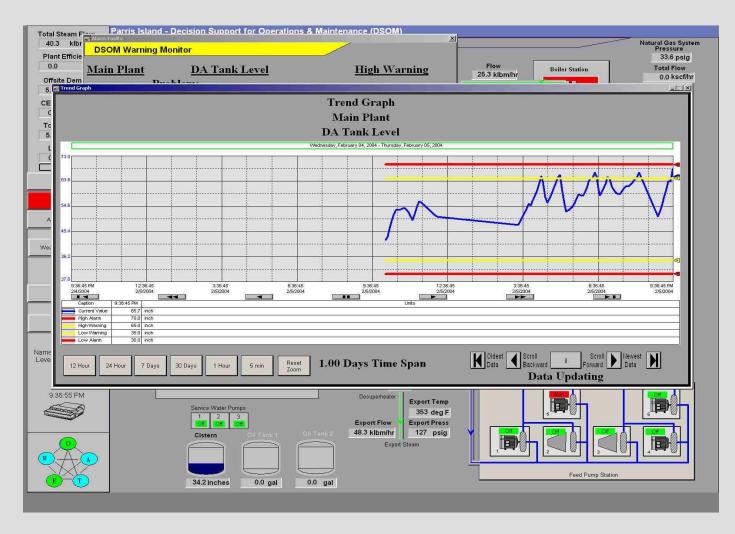
- When to start boilers
- Which boilers to start
- When to bring steam turbine generators on-line
- Which generation combination is most efficient
- How to distribute loading
- When to shutdown generators
- When to shutdown boilers


CEP Overview Display

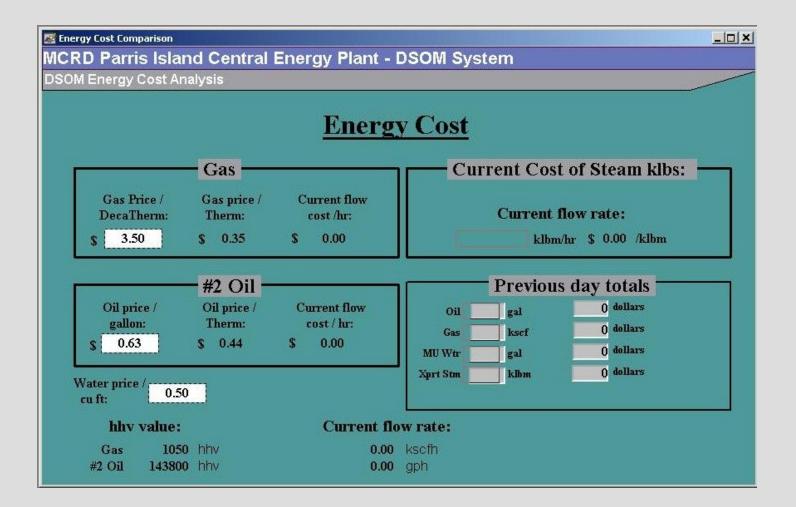
Battelle


Pacific Northwest National Laboratory U.S. Department of Energy 7 04/29/04

DSOM – CEP Alert Display Example


Pacific Northwest National Laboratory U.S. Department of Energy 8 04/29/04

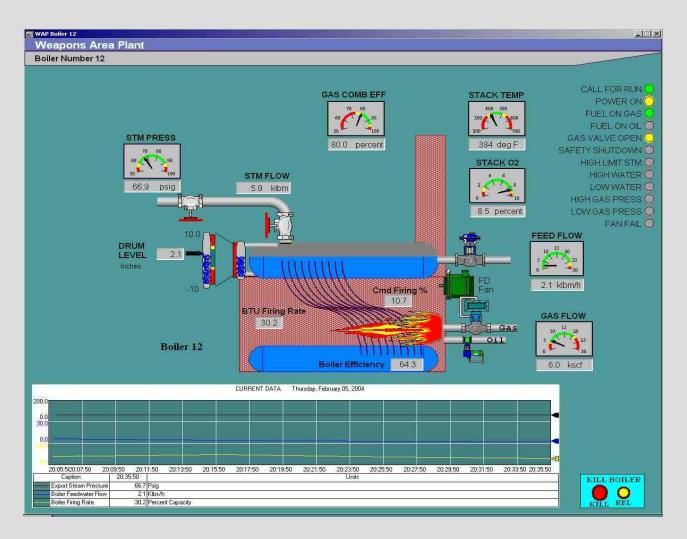
DSOM Diagnostic Display


Pacific Northwest National Laboratory U.S. Department of Energy 9 04/29/04

DSOM – CEP Engineering Trend Display

Pacific Northwest National Laboratory U.S. Department of Energy 10 04/29/04

DSOM – CEP Energy Cost Analysis


DSOM – Weapons Area Plant

- Three 125 psig steam boilers to supply Weapons Area loads
- Manned 24 hours, 7 days a week
- Lack of qualified personnel
- DSOM allowed full remote monitoring with S/D control from CEP
- DSOM allowed unmanning of the plant

DSOM – Weapons Area Plant

- Same software as used at CEP
- Efficiency and parameter monitoring
- Can detect
 - Boiler tube leakage
 - Boiler tube fouling
 - Steam drum water level control malfunctions
 - Excessive firebox heat loss
 - Over-firing and stack gas condensation alarms

DSOM – WAP Boiler 12 Display

Pacific Northwest National Laboratory U.S. Department of Energy 14 04/29/04

Energy Management and Control Systems

- Five different independent building control systems installed
- AC&R shop would send out personnel in trucks to reduce Base load demand
- PNNL engineered system upgraded all with open protocol system
- Designed to coordinate with DSOM at CEP to manage and automatically shed load

EMCS Load Shed Scheme

- CEP asset manager sequences generation requirements
- EMCS allows for building zone temperature control and occupied/un-occupied modes
- When target Base load is exceeded, load shedding sequence is activated
- Will not allow demand to exceed peak

EMCS Demand Load and Status

uperVision Plus - MRT CE View Actions Configure						_18
1 160 Central Plant		- 📰 🃰 🎎 🚱 🛼 🐁 (Manual C	(ommands)	.		
RT CENTER AREA I Bidg. 160 Centra	1 Plant					
		CENTRAL ENERGY PLANT BLDG 160				
	Go To Other Bldgs	60 TO:				
		DEMAND METER F	B AREA	DEMAND BROADCAST		
	Currently	DEMAND SETPOINT: 8200.00		Month-to-dat	e	
				Usage: 7816 mWh		
	70531344	425	Pe	eak: 14:12 26	8409 kW	
	7953 kW			Previous month Usage: 4358 mV/h		
		7953	Pé	eak: 13:47 18	8350 kW	
			-1	Versete date		
	Today	•		Year-to-date		
	Usage: 6371 kWh Peak: 13:00 10 82131	AW I	(a)	Usage: 12174 mWh aak: 14:12 26	8409 kW	
	Previous day			Previous year		
	Usage: 190531 kWh Peak: 12:56 10 8330 l	ww.	þ.	Usage: 6621 mVVh eak: 19:08 4	9100 kVV	
	LAN DMD GRP 1: 0 LAN DMD GRP 2: 0			LAN DMD GRP 6: LAN DMD GRP 7:	0	
	LAN DMD GRP 3: 0	0		LAN DMD GRP 8:	0	
	LAN DMD GRP 4: 0 LAN DMD GRP 5: 0	DEMAND LEVEL: 5.00 Z		LAN DMD GRP 9: LAN DMD GRP 10:		
	EAN DMD GRF 5.	GENERATOR TOTAL:2375.52 kw BLR GAS FLOW: 1297.67 kscfm				
		Recorded Since: 14:12	26			
ng expressions				Operator: Harris :		
	ft Outlook JUS SuperVision Plus - MR				いいない	50 10.F1 /
	🍜 🖸 🌳 🏷 💶 👹 🙆 🖾 🖼 🖉 🍇 🍫 🤇	Address 🛃 http://www.unclewebster.com				2

Pacific Northwest National Laboratory U.S. Department of Energy 17 04/29/04

EMCS Load Shedding Sequence

Demand Group	Stage 1 (kW)	Stage 2 (kW)	Stage 3 (kW)	Stage 4 (kW)
1	7517	7617	7717	7817
2	7527	7627	7727	7827
3	7537	7637	7737	7837
4	7547	7647	7747	7847
5	7557	7657	7757	7857
6	7567	7667	7767	7867
7	7577	7677	7777	7877
8	7587	7687	7787	7887
9	7597	7697	7797	7897
10	7607	7707	7807	7907

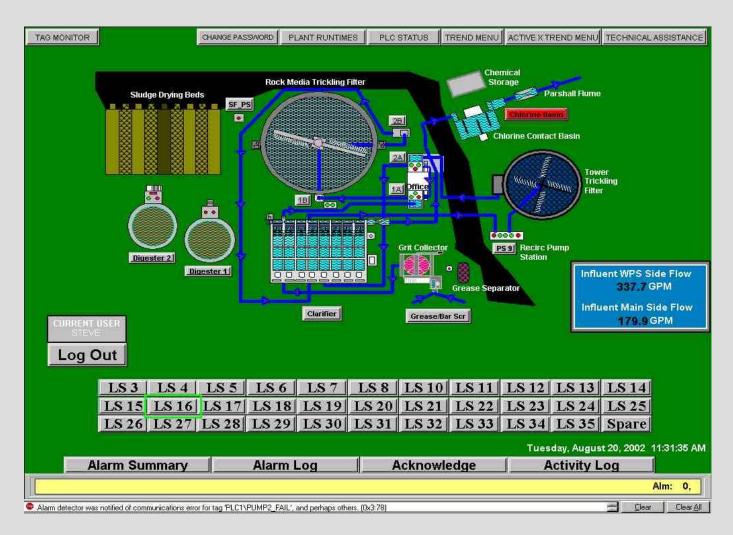
Pacific Northwest National Laboratory U.S. Department of Energy 18 04/29/04

EMCS LAN Demand Stages

- LAN DEMAND Stage # 1 : Resets thermostat set points out 1° F from set point and the chilled water valves stay at 100% capacity.
- LAN DEMAND Stage # 2 : Resets thermostat set points out 2° F from set point and the chilled water valves close to 75% capacity.
- LAN DEMAND Stage # 3 : Resets thermostat set points out 4° F from set point and the chilled water valves close to 25% capacity.
- LAN DEMAND Stage # 4 : Turns main chiller off, and as a backup, closes all the chilled water valves.

EMCS Summary

- Energy Controls Technician can program all load shedding groups and stages according to Base priorities
- 60 buildings are on-line and are controlled to reduce demand by nearly 2 MW over approximately 3.3 million square feet of building space

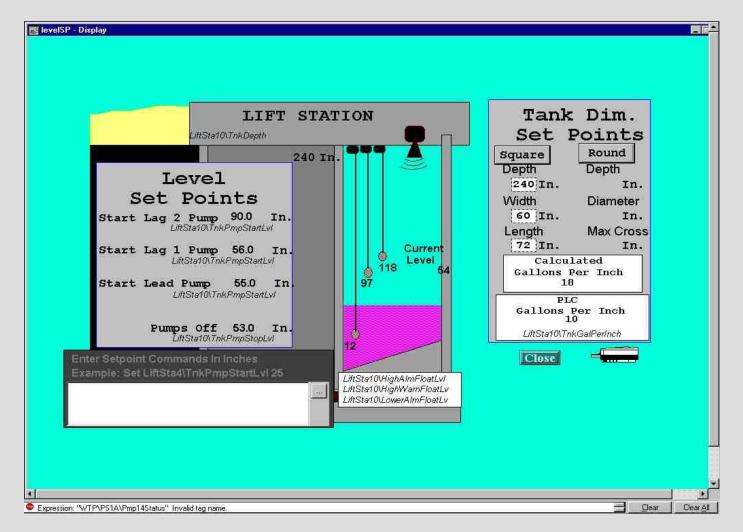

Wastewater Treatment Plant

- Main processing plant with 38 lift/pumping stations
- Capable of processing up to 1.5 million gallons per day
- Concern for spills and environmental conditions due to aging system in disrepair
- PNNL engineered master plan to modify, upgrade or replace all of the control software and hardware

Wastewater Treatment Plant Upgrades

- New SCADA control cabinets designed and installed at each lift station and main plant pumping stations
- Radio communications were upgraded
- UPS provided for lift station control cabinets
- Interfaced with DSOM system at CEP
- As with CEP, GUI designed by PNNL for simple point-and-click operation

Wastewater Treatment Plant Main Display


Wastewater Treatment Plant Control

WWTF office /Supervisor has ability to change

- pump auto start/stop set points and
- level alarm setpoints
- Level control setpoints

Lift station and main processing plant equipment is monitored full time with trending capabilities on run times, pump amperage, and pump capacity

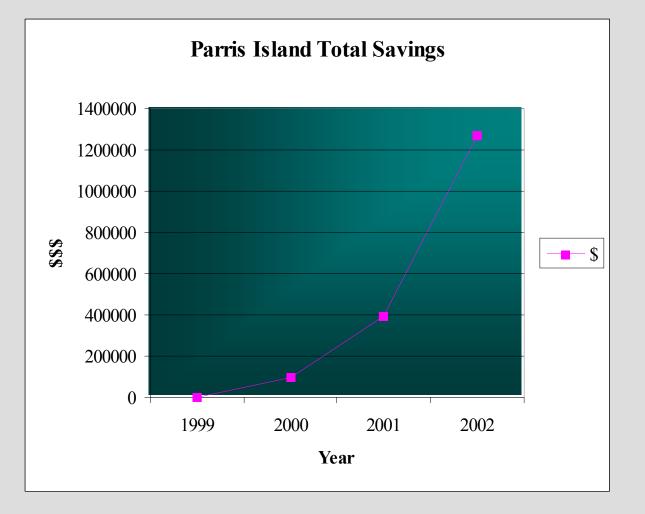
Lift Station Set Points Screen

Pacific Northwest National Laboratory U.S. Department of Energy 25 04/29/04

Energy Savings Summary

Energy use per square foot went from 51.06 Btu/sqft/dd in the base year FY 1999 down to 45.73 Btu/sqft/dd in FY 2002.

This is a reduction of 5.33 Btu/sqft/dd or a 10.4% reduction from the base year. This can be attributed to DSOM and EMCS activities resulting in coordinated energy control at Parris Island.


EMCS Load Shedding Sequence

Fiscal Year	Btu/sqft/dd)	Reduction from Baseline	\$ Saved
1999	51.06		
2000	49.90	1.16	\$94,761
2001	46.82	4.24	\$293,501
2002	45.73	5.33	\$513,491
2003			

Savings Total

- As of the end of FY 2002, savings total \$901,753 dollars from the base year of avoided cost in energy only.
- When additional credit is taken for labor savings (Parris Island has had a net reduction of 8 FTEs because of the DSOM related work), a further reduction of \$368K per year would apply starting in FY 2002
- The avoided cost of \$513K for FY 2002 corresponds to a 10.4% energy dollar savings and a total labor and energy savings for FY 2002 of \$881K for a 3 year total of \$1.3M.

Parris Island Energy Savings Graph

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 29 04/29/04

Summary

In the similar EMCS only project at MCAS Beaufort, installation of the PNNL engineered EMCS system has saved them approximately \$2.4M over the last 3 years on a \$2.6M investment.

These projects demonstrate that the integration of new technologies engineered to provide a facilitywide approach can have a significant impact on energy and personnel savings.