
Northwest Trajectory Analysis Capability: A Platform

for Enhancing Computational Biophysics Analysis

Elena S. Peterson
1
, Eric G. Stephan

1
, Abbie Corrigan

1
, Roberto Lins

1
, Thereza A. Soares

1
, Randy

Scarberry
2
, Stuart Rose

2
, Leigh Williams

2
, Canhai Lai

1
, Terence Critchlow

1
, T.P. Straatsma

1

1
Computational Sciences & Mathematics Division, PNNL, Richland, WA, USA
2
Computational & Statistical Analytics Division, PNNL, Richland, WA, USA

Abstract - As computational resources continue to increase,

the ability of computational simulations to effectively

complement, and in some cases replace, experimentation in

scientific exploration also increases. Today, large-scale

simulations are recognized as an effective tool for scientific

exploration in many disciplines including chemistry and

biology. A natural side effect of this trend has been the need

for an increasingly complex analytical environment. In this

paper, we describe Northwest Trajectory Analysis Capability

(NTRAC), an analytical software suite developed to enhance

the efficiency of computational biophysics analyses. Our

strategy is to layer higher-level services and introduce

improved tools within the user’s familiar environment without

preventing researchers from using traditional tools and

methods. Our desire is to share these experiences to serve as

an example for effectively analyzing data intensive large scale

simulation data.

Keywords: Data Management, Computation Biology

Software, Molecular Dynamics, Data Intensive Computing.

1 Introduction

 The Data Intensive Computing for Complex Biological

Systems (DICCBS) project, at Pacific Northwest National

Laboratory (PNNL) and Oak Ridge National Laboratory

(ORNL), performs leading-edge computational biology and

computational chemistry with the goal of improving the

understanding of complex protein interactions [1]. Scientists

on this project make extensive use of several high-

performance computational tools including: NWChem [2], a

complex, parallel computational chemistry/biophysics

simulation code; and DIAna [3], a parallel data analysis tool.

For example, some of the scientific research that has already

benefited from this infrastructure resulted in the design of a

protein-based scaffold with potential application as biosensors

for in vitro diagnostics of diseases and environmental

pollutants. As scaffold, scientists at PNNL have used the

computationally designed protein Top7 [4] [5]. Because the

Top7-based scaffold exhibits an unusual stability at extreme

temperature and chemical conditions, these biosensors will

have applications outside the highly controlled laboratory

setting. The successful usage of this technology relies on the

molecular level understanding of the factors behind the

stability of Top7. This can be, in principle, achieved by

performing a wide array of simulations of several protein

variants under a variety of physico-chemical conditions (pH,

temperature, ionic strength). However, to manage and analyze

the several TB of generated data would be rather challenging

by traditional means.

Figure 1. The three-dimensional structure of the Top7-

based scaffold. Residues in stick correspond to the new

sequence inserted in the original Top7 protein.

 While the data files produced in this experiment are not

particularly large by today’s standards, the overall collection

of simulation and analysis results is significant. The problem

deepens if comparative analysis involving different

simulations are necessary to answer a specific scientific

question. Also the analytic tools require a large set of specific

inputs and produce a complicated set of results data. An

efficient method for handling the data and results involved in

this paradigm is required [6]. This includes the ability to

search for input data and results data based on metadata about

the simulation as well as general provenance information

about the setup and running of each simulation (i.e. who ran

it, when it was ran, general input parameters, etc). The ability

to tie all this together in a tool suite allows the researchers to

work in one environment that meets their exact needs.

2 Background and Approach

 Our goal was to develop an analytical environment to

increase the efficiency of large scale data analyses without

being intrusive to the scientist’s analytical approach. Our first

task was to discover how the scientists performed their

analysis. In our initial requirements investigation we

discovered researchers relied upon many command line tools

and visualization tools that they had grown accustomed to, but

turned out to be inefficient and cumbersome. The

inefficiencies of their process and tools didn’t create problems

until they started on larger scale data analysis which required

dealing with larger data and other collaborators. This

generated some new requirements:

• Search capabilities: Scientists could no longer store

simulations on local disk. The scientists required a

more sophisticated means to store the simulations

without needing to track the simulations by hand or

continually download hundreds of gigabytes of files

to search through their results.

• Data conversion/visualization tools: Various

visualization tools were used by scientists but each

had their own data formatting requirements. The

scientists would have to remember which tool could

graph which type of analysis file and then convert

their data to that tool’s particular format.

• Data Management/Archive: As stated earlier, there

was too much data to manage on local disks so a long

term storage system was needed. Along with storing

the data they wanted to be able to share it with their

collaborators.

Based on the requirements analysis it was abundantly clear

that in order for NTRAC to be useful it had to dovetail high

level capabilities into the existing infrastructure and

capabilities. Our motivation was in part focused on seeking

early adoption to address user needs immediately because we

knew scientists were ultimately more interested in

accomplishing their science than waiting for an end-to-end

solution.

With this rationale we designed a solution that provided

users multiple access levels. On one level is a suite of

advanced client side analytical capabilities and data

management tools. On another level, however, the scientists

use traditional methods to directly store and retrieve data. We

also gave users the ability to mix and match the advanced

capabilities with traditional methods. An example of this was

allowing users to have full access to the analytical tools

without the GUI.

For scientists wanting to use traditional methods NTRAC

imposed little impact. These users would be requested to

share their data in an archive shared area, rather than store it

locally. For scientists having more demanding needs such as

searches and visualization they could take advantage of the

new tools. We made our approach generic enough to allow

our new tools to be plugged into any underlying archive

infrastructure.

 Based on these requirements we developed a preliminary

design that included user interface mockups, application

interfaces, and example visualizations. The requirements

analysis, preliminary design, and extensive user interviews

provided us with a basis to develop a system that was

applicable to the users needs and unobtrusive in its

implementation. Because many of the software components

to be developed were not directly dependent on each we were

able to design and implement them in parallel. This allowed

us to get prototypes into the users hands quickly.

3 Architecture

 There are three main parts to the overall architecture of our

system all three of which are both integrated and can be used

alone. First is the user interface tool suite that allows the users

to search for simulation files, launch the analysis tool(s), and

visualize the outputs of that analysis. Then there is the data

storage and movement architecture, and finally the metadata

[7] services architecture.

Local Disk

Harvester Metadata

Viz

Search

Launch

JDBC

Simulations SQL

Input Deck
NWChem

D

I

A

N

A

HPC

Archive

Archive

Tool

Simulations

Simulations

NTRAC Central

Local Disk

Harvester Metadata

Viz

Search

Launch

Viz

Search

Launch

JDBC

Simulations SQL

Input Deck
NWChem

D

I

A

N

A

HPC

Archive

Archive

Tool

Simulations

Simulations

NTRAC Central

Figure 2. NTRAC Architecture depicting data flow from

simulation to storage and to user analysis.

3.1 NTRAC Central – User Environment

For integrated analysis capabilities we designed a client that

provided an intuitive user interface for the scientists to work

in. Scientists could use this tool exclusively to search for all

or part of archived NWChem simulations, to launch DIAna to

analyze the simulation results, and to visualize the analysis

results.

The NTRAC workflow typically begins with the search

capability. Queries to select simulations for DIAna analysis

are performed using a simple database call to the metadata

repository (described below). Search criteria can include

selections about the simulation run itself (e.g. scientist name,

simulation name, system type, method, and status) or

properties of the simulation. The query results are presented

to the user through a table/excel like interface and they can

sort and subset from there.

Once a set of simulations is chosen, those files are

downloaded to the local machine through the same protocols

described below as the archive tool. The user can then use the

DIAna input tool to select their input deck to the analysis tool.

DIAna is a complex analysis tool written in Fortran 90.

Analyses are carried out using an input deck describing the

required analyses and proper inputs. The format of the file

requires extensive knowledge of DIAna and the kind of

analyses a user wants to carry out. As a result formatting an

input file correctly was quite difficult even to the expert users.

To make DIAna more usable and robust, the user interface

guarantees the scientist that the input file created is well

formed and will provide the results requested. Once the initial

input is created users have the option of fine tuning their input

prior to analysis by editing the file directly from the user

interface. This accomplished two objectives, creating a sense

of trust with the scientists – they could see exactly what the

user interface was producing, and because the DIAna tool is

changing rapidly they could make edits/additions without

waiting for an update to the user interface.

Once the DIAna analysis is successfully completed we

provide a rich set of graphing tools to visualize the results. As

a foundation for our visualization environment we

incorporated the JGraph [8] open source software to support

the ability to provide various types of graphs given one set of

inputs. To handle the numerous output formats we created a

generic parser structure that requires only a few minor changes

to produce a new type of visualization. As well, the various

visualization screens all have similar behavior and look and

feel.

To support persistence in user sessions we created a

“context” file that tracks the state of the tools so that a user

isn’t constrained to performing all of their analysis in one

execution of the client.

Figure 3. Examples of NTRAC Central user interface

3.2 Data Management Tools

In order to move beyond the initial ad hoc data management

approach used by our scientists, we needed to address the

major underlying issues that gave rise to it: the system

administrators for each computational and storage resources

were balancing different and conflicting requirements for

these resources. As a result, each cluster and archive had its

own management policy and configuration, making it

extremely difficult to provide consistent capabilities across the

computation environment utilized by scientists. The original

policies were so diverse it wasn’t always easy to know that the

best data transfer method was being chosen. Lacking a

ubiquitous data transfer capability, scientists ended up using

only a subset of the available resources and thus were unable

to take full advantage of the available capabilities.

To create that ubiquitous data transfer capability meant

having a single tool that would pick the most efficient transfer

method. We wrote a light-weight copy script in Python that

works the same on all compute nodes. This script relies upon a

protocol registry database that describes how available

computational resources talk to each other. Using a data

driven approach for determining the best method of data

transfer rather than hardwiring a solution has given us the

flexibility to dynamically alter data transfer strategies. Based

on the selected protocol the script automatically builds the

transfer commands and transfers the files. By masking the

complexity of the environment through this script, our

scientists no longer need to worry about the nuances of the

underlying capabilities

3.2.1 Archive

For archiving we relied upon the PNNL’s Environmental

Molecular Science’s Laboratory (EMSL) [9] 300 terabyte

archive, NWfs. NWfs was created as a long term storage

system but not necessarily as a data repository and definitely

not for data sharing. As such it is large and regularly backed

up but has only minimal data management support and no on-

box computation capability. We worked with the NWfs team

to create a solution by creating a “user-group”, setting

permissions appropriately and adding our researchers and their

collaborators to that group. This gave the researchers one

place for all of their data to be shared. While this is obviously

not the entire data repository solution it did help us to lay a

foundation with the scientists for creating a better long term

solution.

3.3 Metadata Services

Because of the limited access to the archive, harvesting

metadata [10] similar to the way web crawlers search the web

to refresh search engines was a reasonable approach. The

metadata services consist of three components: an intelligent

harvester, a results parser, and a metadata store.

While archiving and sharing data sets is an important data

management capability, being able to efficiently identify the

subset of information currently of interest is critical in

effectively managing the repository over time. We believe a

metadata service approach, which supports complex user

queries over metadata extracted from the simulation and

analysis data sets, is the best way to deliver this capability.

File Analysis_file Analysis

Analysis_Metadata
Simulation_file

Key_Types
Simulation

Simulation_Metadata

Scientist

Application

Figure 4. Metadata service schema

We have two services that obtain metadata. The first is an

automatic extraction of metadata from known file types. We

use the Defuddle [11] [12] parser to extract approximately 40

metadata attributes from NWChem and DIAna. This service

automatically crawls the archive to identify new files,

determines if the file is of a known type, and if it is, extracts

the metadata. The second service is built on top of the copy

capability, and allows scientists to manually annotate their

data through a simple GUI when they archive it. This allows

us to obtain high-level information, which is outside the scope

of the automatically generated metadata, about the results

being archived. These annotations are extremely important

since they allow the simulation to be placed in the appropriate

context long after the experiment was performed.

The extracted metadata is stored in the archive as a

collection of self-describing XML files, one for each archive

file. We also load this information into a PostgresQL
TM

database for ease of search later on.

While the use of an intermediate, self-describing, XML

format may seem inefficient at first glance, we believe it is

important to the long-term success of NTRAC. Both

NWChem and DIAna are actively evolving, constantly adding

new capabilities and improving existing features. XML is an

extremely flexible data description format. This flexibility is

enhanced by Defuddle code, which generates an XML

representation of a file based on a declarative description of

the original file format. As a result, we believe that this

architecture will allow us to easily adapt to changes in the

underlying simulation and analysis codes.

4 Discussion

Our development approach was to target early adopters and

put discrete software capabilities into the researchers’ hands as

quickly as possible. This rapid prototyping approach gave the

developers early evidence about the usefulness of the tools

and guided new capability development or changed the

requirements to better fit the scientists’ needs.

The data management developers teamed with our internal

computing infrastructure to define and implement faster

methods of managing the large amounts of simulation results

data files that often had to be moved from the compute

machines to the storage areas. We were able to replace the

long and painful process with a simpler and faster one and

gain the trust of our users immediately.

During a three month evaluation period the value of this

approach became apparent. During the early part of the

evaluation period the secure copy protocol (scp) out

performed the secure file transfer protocol (SFTP) by a factor

of 100%. At the end of the evaluation period sftp became

inefficient and scp outperformed sftp by almost 100%. The

many aspects (i.e. network configuration, firewalls, etc) that

account for these results are out of our control and beyond the

capability of the general scientist to understand and

manipulate. This simple litmus test helps give our users a best

practices approach to data transfer.

To develop the metadata services we worked with users to

develop a schema to support metadata collection and defined a

raw data translator using Defuddle team to make configuring

the metadata services completely data driven.

Without a metadata service identifying data of interest

requires scientists to manually identify the appropriate

simulation result files, download them, and inspect their

metadata to determine which data should participate in the

analysis. This is an extremely time consuming and painful

process. Obviously, the complexity of identifying the

appropriate simulation, or set of simulations in the case of a

comparative analysis, increases as the data archive grows. As

a result, it is easy to overlook relevant simulations.

Furthermore, the data and analysis files are intended for

software processing, not manual examination, and thus it is

challenging to determine which datasets should be analyzed.

Without using a metadata service setting up an analysis could

take from days to weeks. Now with the help of the NTRAC

Central search tool the metadata repository can perform

queries in milliseconds.

The client tools were created to ease the process and

provide support for the current workflow again without being

intrusive or creating something unknown to the scientists. We

were able to increase efficiency and accuracy to the overall

process and gained user acceptance by providing small pieces

in a timely manner.

As mentioned earlier this resource proved invaluable

because now visualization and analysis were stream-lined and

avoided the hours of mundane steps it took to reformat results

during analysis. This capability now enabled the scientists to

see their data in a matter of minutes.

5 Conclusion

NTRAC proved to be a robust, cost effective solution to

support computational biophysics analysis at PNNL. As the

analysis tools built around NWChem evolve and become

available to the scientific community at large we will also

provide them with our NTRAC Central solutions.

Through our experiences we found NTRAC serves as an

example for ways research teams can enhance the analytical

experience that data intensive applications require even while

the application is evolving. Our long term vision is to apply

the lessons of NTRAC to other large scale bioinformatics and

computational biology problems and to incorporate leading

edge research such as incorporation of scientific workflows

and provenance tracking to capture data lineage, and

interconnect with other biological grids.

6 Acknowledgements

This work was funded by the U. S. Department of Energy

Office of Advanced Scientific Computing Research. PNNL is

operated by Battelle for the U. S. Dept. of Energy

7 References

[1] Data-Intensive Computing for Complex Biological

Science http://www.biopilot.org

[2] R.A. Kendall; E. Apra; D.E. Bernholdt; E.J. Bylaska; M.

Dupuis; G.I. Fann; R.J. Harrison; J. Ju; J.A. Nichols; J.

Nieplocha; T.P. Straatsma; T.L. Windus; A.T. Wong. “High

Performance Computational Chemistry: An Overview of

NWChem a Distributed Parallel Application”; Computer

Shys. Comm, 128, (260-283), 2000.

[3] T.P. Straatsma. “Data Intesive Analysis of Biomelecular

Simulations”; International Conference of Computational

Methods in Sciences and Engineering, 963(2), (1379-1382),

2007.

[4] B. Kuhlman; G Dantas; G.C. Ireton; G. Varani; B.L.

Stoddard; D. Baker. “Design of a novel globular protein fold

with atomic-level accuracy”; Science, 302, (1364-1368),

2003.

[5] T.A. Soares; T.P. Straatsma. “Design of the Top7

protein as a scaffold for antigen-binding epitopes”; Presented

by Thereza Soares (Invited Speaker) at the American

Chimical Society NORM, June, 2007.

[6] T.P. Straatsma. “Data-intensive computing laying the

foundation for biological breakthroughs”; Breakthroughs, 10,

Spring 2007.

[7] K. Jeffery. “Metadata: An Overview and Some Issues”;

ERCIM News, 35, October 1998.

[8] James S. Plank. “Jgraph – A Filter for Plotting Graphs in

PostScript”; USENIX Technical Conference Proceedings,

(61-66), Winter 1993.

[9] Environmental Molecular Sciences Laboratory

http://www.emsl.pnl.gov

[10] http://lftp.yar.ru

[11] B. Wu; T.D. Talbott; K.L. Schuchardt; E.G. Stephan;

J.D. Myers. “Mapping Phyisical Formats to Logical Models

to Extract Data and Metadata: The Defuddle Parsing

Engine”; IPAW’06 Internation Provenance and Annotation

Workshop, May 2006.

[12] Martin Westhead, Ted Wen, Reobert Carroll.

“Describing Data on the Grid”; fourth International Workshop

on Grid Computing (134), 2003.

