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Abstract - As computational resources continue to increase, 

the ability of computational simulations to effectively 

complement, and in some cases replace, experimentation in 

scientific exploration also increases. Today, large-scale 

simulations are recognized as an effective tool for scientific 

exploration in many disciplines including chemistry and 

biology. A natural side effect of this trend has been the need 

for an increasingly complex analytical environment. In this 

paper, we describe Northwest Trajectory Analysis Capability 

(NTRAC), an analytical software suite developed to enhance 

the efficiency of computational biophysics analyses. Our 

strategy is to layer higher-level services and introduce 

improved tools within the user’s familiar environment without 

preventing researchers from using traditional tools and 

methods.  Our desire is to share these experiences to serve as 

an example for effectively analyzing data intensive large scale 

simulation data. 
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1 Introduction 

  The Data Intensive Computing for Complex Biological 

Systems (DICCBS) project, at Pacific Northwest National 

Laboratory (PNNL) and Oak Ridge National Laboratory 

(ORNL), performs leading-edge computational biology and 

computational chemistry with the goal of improving the 

understanding of complex protein interactions [1]. Scientists 

on this project make extensive use of several high-

performance computational tools including: NWChem [2], a 

complex, parallel computational chemistry/biophysics 

simulation code; and DIAna [3], a parallel data analysis tool.    

For example, some of the scientific research that has already 

benefited from this infrastructure resulted in the design of a 

protein-based scaffold with potential application as biosensors 

for in vitro diagnostics of diseases and environmental 

pollutants. As scaffold, scientists at PNNL have used the 

computationally designed protein Top7 [4] [5]. Because the 

Top7-based scaffold exhibits an unusual stability at extreme 

temperature and chemical conditions, these biosensors will 

have applications outside the highly controlled laboratory 

setting. The successful usage of this technology relies on the 

molecular level understanding of the factors behind the 

stability of Top7. This can be, in principle, achieved by 

performing a wide array of simulations of several protein 

variants under a variety of physico-chemical conditions (pH, 

temperature, ionic strength). However, to manage and analyze 

the several TB of generated data would be rather challenging 

by traditional means. 

 
 

Figure 1.  The three-dimensional structure of the Top7-

based scaffold. Residues in stick correspond to the new 

sequence inserted in the original Top7 protein. 

 

 While the data files produced in this experiment are not 

particularly large by today’s standards, the overall collection 

of simulation and analysis results is significant. The problem 

deepens if comparative analysis involving different 

simulations are necessary to answer a specific scientific 

question.  Also the analytic tools require a large set of specific 

inputs and produce a complicated set of results data.  An 

efficient method for handling the data and results involved in 

this paradigm is required [6]. This includes the ability to 

search for input data and results data based on metadata about 

the simulation as well as general provenance information 

about the setup and running of each simulation (i.e. who ran 

it, when it was ran, general input parameters, etc).  The ability 

to tie all this together in a tool suite allows the researchers to 

work in one environment that meets their exact needs. 



2 Background and Approach 

 Our goal was to develop an analytical environment to 

increase the efficiency of large scale data analyses without 

being intrusive to the scientist’s analytical approach. Our first 

task was to discover how the scientists performed their 

analysis.  In our initial requirements investigation we 

discovered researchers relied upon many command line tools 

and visualization tools that they had grown accustomed to, but 

turned out to be inefficient and cumbersome. The 

inefficiencies of their process and tools didn’t create problems 

until they started on larger scale data analysis which required 

dealing with larger data and other collaborators.  This 

generated some new requirements: 

 

• Search capabilities:  Scientists could no longer store 

simulations on local disk. The scientists required a 

more sophisticated means to store the simulations 

without needing to track the simulations by hand or 

continually download hundreds of gigabytes of files 

to search through their results.  

• Data conversion/visualization tools:  Various 

visualization tools were used by scientists but each 

had their own data formatting requirements.  The 

scientists would have to remember which tool could 

graph which type of analysis file and then convert 

their data to that tool’s particular format. 

• Data Management/Archive: As stated earlier, there 

was too much data to manage on local disks so a long 

term storage system was needed.  Along with storing 

the data they wanted to be able to share it with their 

collaborators.   

 

Based on the requirements analysis it was abundantly clear 

that in order for NTRAC to be useful it had to dovetail high 

level capabilities into the existing infrastructure and 

capabilities.   Our motivation was in part focused on seeking 

early adoption to address user needs immediately because we 

knew scientists were ultimately more interested in 

accomplishing their science than waiting for an end-to-end 

solution.  

 

With this rationale we designed a solution that provided 

users multiple access levels.  On one level is a suite of 

advanced client side analytical capabilities and data 

management tools.  On another level, however, the scientists 

use traditional methods to directly store and retrieve data.  We 

also gave users the ability to mix and match the advanced 

capabilities with traditional methods.  An example of this was 

allowing users to have full access to the analytical tools 

without the GUI. 

 

For scientists wanting to use traditional methods NTRAC 

imposed little impact.  These users would be requested to 

share their data in an archive shared area, rather than store it 

locally.  For scientists having more demanding needs such as 

searches and visualization they could take advantage of the 

new tools.  We made our approach generic enough to allow 

our new tools to be plugged into any underlying archive 

infrastructure. 

 

 Based on these requirements we developed a preliminary 

design that included user interface mockups, application 

interfaces, and example visualizations.  The requirements 

analysis, preliminary design, and extensive user interviews 

provided us with a basis to develop a system that was 

applicable to the users needs and unobtrusive in its 

implementation.  Because many of the software components 

to be developed were not directly dependent on each we were 

able to design and implement them in parallel.  This allowed 

us to get prototypes into the users hands quickly. 

3 Architecture 

 There are three main parts to the overall architecture of our 

system all three of which are both integrated and can be used 

alone.  First is the user interface tool suite that allows the users 

to search for simulation files, launch the analysis tool(s), and 

visualize the outputs of that analysis.  Then there is the data 

storage and movement architecture, and finally the metadata 

[7] services architecture. 
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Figure 2.  NTRAC Architecture depicting data flow from 

simulation to storage and to user analysis.  

 

3.1 NTRAC Central – User Environment 

For integrated analysis capabilities we designed a client that 

provided an intuitive user interface for the scientists to work 

in.  Scientists could use this tool exclusively to search for all 

or part of archived NWChem simulations, to launch DIAna to 

analyze the simulation results, and to visualize the analysis 

results.   

 

The NTRAC workflow typically begins with the search 

capability.  Queries to select simulations for DIAna analysis 

are performed using a simple database call to the metadata 

repository (described below).  Search criteria can include 

selections about the simulation run itself (e.g. scientist name, 



simulation name, system type, method, and status) or 

properties of the simulation.  The query results are presented 

to the user through a table/excel like interface and they can 

sort and subset from there.   

 

Once a set of simulations is chosen, those files are 

downloaded to the local machine through the same protocols 

described below as the archive tool.  The user can then use the 

DIAna input tool to select their input deck to the analysis tool.  

DIAna is a complex analysis tool written in Fortran 90.  

Analyses are carried out using an input deck describing the 

required analyses and proper inputs.  The format of the file 

requires extensive knowledge of DIAna and the kind of 

analyses a user wants to carry out.  As a result formatting an 

input file correctly was quite difficult even to the expert users.  

To make DIAna more usable and robust, the user interface 

guarantees the scientist that the input file created is well 

formed and will provide the results requested.  Once the initial 

input is created users have the option of fine tuning their input 

prior to analysis by editing the file directly from the user 

interface.   This accomplished two objectives, creating a sense 

of trust with the scientists – they could see exactly what the 

user interface was producing, and because the DIAna tool is 

changing rapidly they could make edits/additions without 

waiting for an update to the user interface.   

 

Once the DIAna analysis is successfully completed we 

provide a rich set of graphing tools to visualize the results.  As 

a foundation for our visualization environment we 

incorporated the JGraph [8] open source software to support 

the ability to provide various types of graphs given one set of 

inputs.  To handle the numerous output formats we created a 

generic parser structure that requires only a few minor changes 

to produce a new type of visualization.  As well, the various 

visualization screens all have similar behavior and look and 

feel. 

 

To support persistence in user sessions we created a 

“context” file that tracks the state of the tools so that a user 

isn’t constrained to performing all of their analysis in one 

execution of the client.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Examples of NTRAC Central user interface 

3.2  Data Management Tools 

In order to move beyond the initial ad hoc data management 

approach used by our scientists, we needed to address the 

major underlying issues that gave rise to it: the system 

administrators for each computational and storage resources 

were balancing different and conflicting requirements for 

these resources. As a result, each cluster and archive had its 

own management policy and configuration, making it 

extremely difficult to provide consistent capabilities across the 

computation environment utilized by scientists. The original 

policies were so diverse it wasn’t always easy to know that the 

best data transfer method was being chosen.  Lacking a 

ubiquitous data transfer capability, scientists ended up using 

only a subset of the available resources and thus were unable 

to take full advantage of the available capabilities.  

 

To create that ubiquitous data transfer capability meant 

having a single tool that would pick the most efficient transfer 

method. We wrote a light-weight copy script in Python that 

works the same on all compute nodes. This script relies upon a 

protocol registry database that describes how available 

computational resources talk to each other.  Using a data 

driven approach for determining the best method of data 

transfer rather than hardwiring a solution has given us the 

flexibility to dynamically alter data transfer strategies. Based 

on the selected protocol the script automatically builds the 

transfer commands and transfers the files. By masking the 

complexity of the environment through this script, our 

scientists no longer need to worry about the nuances of the 

underlying capabilities  

3.2.1 Archive 

For archiving we relied upon the PNNL’s Environmental 

Molecular Science’s Laboratory (EMSL) [9] 300 terabyte 

archive, NWfs.  NWfs was created as a long term storage 

system but not necessarily as a data repository and definitely 

not for data sharing.  As such it is large and regularly backed 

up but has only minimal data management support and no on-

box computation capability. We worked with the NWfs team 

to create a solution by creating a “user-group”, setting 

permissions appropriately and adding our researchers and their 

collaborators to that group.  This gave the researchers one 

place for all of their data to be shared.  While this is obviously 

not the entire data repository solution it did help us to lay a 

foundation with the scientists for creating a better long term 

solution.  

 

3.3 Metadata Services 

Because of the limited access to the archive, harvesting 

metadata [10] similar to the way web crawlers search the web 

to refresh search engines was a reasonable approach.  The 

metadata services consist of three components:  an intelligent 

harvester, a results parser, and a metadata store. 

 



While archiving and sharing data sets is an important data 

management capability, being able to efficiently identify the 

subset of information currently of interest is critical in 

effectively managing the repository over time. We believe a 

metadata service approach, which supports complex user 

queries over metadata extracted from the simulation and 

analysis data sets, is the best way to deliver this capability.   
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Figure 4. Metadata service schema 

 

 

We have two services that obtain metadata.  The first is an 

automatic extraction of metadata from known file types. We 

use the Defuddle [11] [12] parser to extract approximately 40 

metadata attributes from NWChem and DIAna. This service 

automatically crawls the archive to identify new files, 

determines if the file is of a known type, and if it is, extracts 

the metadata. The second service is built on top of the copy 

capability, and allows scientists to manually annotate their 

data through a simple GUI when they archive it. This allows 

us to obtain high-level information, which is outside the scope 

of the automatically generated metadata, about the results 

being archived. These annotations are extremely important 

since they allow the simulation to be placed in the appropriate 

context long after the experiment was performed.  

 

The extracted metadata is stored in the archive as a 

collection of self-describing XML files, one for each archive 

file. We also load this information into a PostgresQL
TM

 

database for ease of search later on.  

 

While the use of an intermediate, self-describing, XML 

format may seem inefficient at first glance, we believe it is 

important to the long-term success of NTRAC. Both 

NWChem and DIAna are actively evolving, constantly adding 

new capabilities and improving existing features. XML is an 

extremely flexible data description format. This flexibility is 

enhanced by Defuddle code, which generates an XML 

representation of a file based on a declarative description of 

the original file format. As a result, we believe that this 

architecture will allow us to easily adapt to changes in the 

underlying simulation and analysis codes. 

4 Discussion 

Our development approach was to target early adopters and 

put discrete software capabilities into the researchers’ hands as 

quickly as possible.  This rapid prototyping approach gave the 

developers early evidence about the usefulness of the tools 

and guided new capability development or changed the 

requirements to better fit the scientists’ needs.    

 

The data management developers teamed with our internal 

computing infrastructure to define and implement faster 

methods of managing the large amounts of simulation results 

data files that often had to be moved from the compute 

machines to the storage areas.  We were able to replace the 

long and painful process with a simpler and faster one and 

gain the trust of our users immediately. 

 

During a three month evaluation period the value of this 

approach became apparent.  During the early part of the 

evaluation period the secure copy protocol (scp) out 

performed the secure file transfer protocol (SFTP) by a factor 

of 100%.  At the end of the evaluation period sftp became 

inefficient and scp outperformed sftp by almost 100%.  The 

many aspects (i.e. network configuration, firewalls, etc) that  

account for these results are out of our control and beyond the 

capability of the general scientist to understand and 

manipulate.  This simple litmus test helps give our users a best 

practices approach to data transfer.  

 

To develop the metadata services we worked with users to 

develop a schema to support metadata collection and defined a 

raw data translator using Defuddle team to make configuring 

the metadata services completely data driven.   

 

Without a metadata service identifying data of interest 

requires scientists to manually identify the appropriate 

simulation result files, download them, and inspect their 

metadata to determine which data should participate in the 

analysis.  This is an extremely time consuming and painful 

process. Obviously, the complexity of identifying the 

appropriate simulation, or set of simulations in the case of a 

comparative analysis, increases as the data archive grows. As 

a result, it is easy to overlook relevant simulations. 

Furthermore, the data and analysis files are intended for 

software processing, not manual examination, and thus it is 

challenging to determine which datasets should be analyzed.  

Without using a metadata service setting up an analysis could 

take from days to weeks.  Now with the help of the NTRAC 

Central search tool the metadata repository can perform 

queries in milliseconds.  

 

The client tools were created to ease the process and 

provide support for the current workflow again without being 

intrusive or creating something unknown to the scientists.  We 

were able to increase efficiency and accuracy to the overall 

process and gained user acceptance by providing small pieces 

in a timely manner.   



 

As mentioned earlier this resource proved invaluable 

because now visualization and analysis were stream-lined and 

avoided the hours of mundane steps it took to reformat results 

during analysis. This capability now enabled the scientists to 

see their data in a matter of minutes. 

 

5 Conclusion 

NTRAC proved to be a robust, cost effective solution to 

support computational biophysics analysis at PNNL.  As the 

analysis tools built around NWChem evolve and become 

available to the scientific community at large we will also 

provide them with our NTRAC Central solutions. 

 

Through our experiences we found NTRAC serves as an 

example for ways research teams can enhance the analytical 

experience that data intensive applications require even while 

the application is evolving.   Our long term vision is to apply 

the lessons of NTRAC to other large scale bioinformatics and 

computational biology problems and to incorporate leading 

edge research such as incorporation of scientific workflows 

and provenance tracking to capture data lineage, and 

interconnect with other biological grids. 
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