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Methodology, Metrics and Measures for Testing and 
Evaluation of Intelligence Analysis Tools 

 

1. Introduction 
 
The intelligence analysis (IA) professional is confronted each day with high demands for 
rapid, yet accurate assessments that require discovery and marshalling of evidence, 
integration and synthesis of data from disparate sources, interpreting and evaluating data 
and information that are constantly changing, and making recommendations or predictions 
in the face of inconsistent and incomplete data.  Recognizing the difficulty of the IA task, 
stakeholders and the research community have been seeking technology-based solutions to 
reduce the analyst’s workload and improve the throughput and quality of IA products.  
Research conducted by and for the intelligence community (IC), such as the Advanced 
Research and Development Activity’s (ARDA) Novel Intelligence from Massive Data 
(NIMD) program, aims to develop tools for analysts that enhance such activities as 
information collection, hypothesis generation and tracking, integration of information from 
large data sets, and analysis/assessment of evidence bearing on alternative hypotheses.  It 
is expected that such research conducted by leading scientists from academic and 
commercial R&D communities will yield products that, once deployed in operating IA 
facilities, will produce measurable performance improvements.  A challenge for the 
research community is to develop useful and valid metrics and measures that may be used 
to assess the impact of software tools and products intended to improve IA performance. 
 
Recent workshops and conferences supporting the IC have highlighted the need to 
characterize the difficulty or complexity of intelligence analysis (IA) tasks in order to 
facilitate assessments of the impact or effectiveness of IA tools that are being considered 
for introduction into the IC.  Some fundamental issues are: (a) how to employ rigorous 
methodologies in evaluating tools, given a host of problems such as controlling for task 
difficulty, effects of time or learning, and small-sample size limitations; (b) how to 
measure the difficulty and complexity of IA tasks; and (c) how to develop more rigorous 
(summative), performance-based measures of human performance beyond the more 
traditional reliance on formative assessments (e.g., subjective ratings).  This critical 
challenge must be addressed to ensure that tools and techniques introduced into the IA 
process are effective.   
 

2. Background 
 
An active area of research is the design and development of tools to improve IA.  
Evaluating the effectiveness of tools proposed for introduction into the IC requires the use 
of realistic IA tasks and an appropriate research methodology that controls for task 
difficulty.  Typical evaluations, if they occur at all, do not employ proper experimental (or 
quasi-experimental) methodology and address only formative levels of evaluation (e.g., 
user ratings).  Thus, the evaluation methodology must be at least sound and rigorous 
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(defensible) if not "scientifically valid."  It is difficult to conduct true experiments in our 
domain, but we should avoid logical and methodological pitfalls that would call the 
conclusions of such studies into question (e.g., due to factors that may "confound" the 
results).  Quasi-experimental research methods may apply.  One important ingredient of a 
sound methodology is to demonstrate some control over the independent variables—
specifically, the nature/difficulty of the tasks used in the study.   
 
Thus, greater control of task difficulty and performance based metrics are needed to assure 
more scientific, rigorous, and objective decisions.  There is a need to characterize the 
difficulty or complexity of IA tasks.  Some fundamental issues are: (a) how to employ 
rigorous methodologies in evaluating tools, given a host of problems such as controlling 
for task difficulty, effects of time or learning, small-sample size limitations; (b) how to 
measure the difficulty/complexity of IA tasks in order to establish valid 
experimental/quasi-experimental designs aimed to support evaluation of tools; and (c) 
development of more rigorous (summative), performance-based measures of human 
performance during the conduct of IA tasks, beyond the more traditional reliance on 
formative assessments (e.g., subjective ratings). 
 

3. Objective 
 
Three objectives of this research, and the accompanying report, are to: 
 
• Examine possible research methodologies and designs that may be applied effectively 

and expediently to support tool evaluation and to identify issues and pitfalls in flawed 
designs that should be avoided. 

• Discuss concepts and describe factors that should be considered in developing a useful 
set of task difficulty dimensions to support evaluation and testing of IA tools. 

• Begin to address issues relating to behavioral, task-based performance measures that 
that are focused on specific areas of performance that a prospective tool is designed to 
impact. 

 
Each of these three sets of issues and challenges are summarized in the major sections of 
this report. 
 

4. Research Methodology 

4.1 Overview of the Research Methodology Problem 
 
Concerns about research methodology arise because of the constraints of testing proposed 
tools in real-world settings.  It is difficult or impossible to design and carry out a controlled 
experiment with rigorous experimental and control groups.  Therefore, there are risks to 
evaluation validity, such as the following: 
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• Are selected tasks representative of IA in general? 
• Do we know enough about how to take task difficulty into account or to control this 

factor? 
• Are the tasks sufficiently understood to enable evaluation of the quality of the product? 
• Are there enough participants for the study? 
• Do the participants represent the broader population of intelligence analysts? 
• Are there a sufficient number of tasks available for study? 
• In the design of the study, how can we account for or control learning effects (i.e., the 

fact that participants will gain experience with the tool being tested and therefore 
improve naturally as the study continues)? 

• In the design of the study, how can we account for or control order effects?  That is, we 
need to make sure that the manipulations or interventions introduced in the study do 
not all occur in the same order for all participants—this is related to the learning effect 
issue, above. 

 
Challenges for designing valid and rigorous studies to assess the effectiveness of IA tools 
center on finding practical solutions to these questions.  The problem with small sample 
sizes (due to budget limitations and practical limitations) applies both to the number of 
tasks selected for study as well as the number of analysts who are able to participate in the 
study.  The effects of time/learning effects are particularly challenging given the small 
sample sizes that are available.   
 

4.2 Scope of Discussion on Methodology, Metrics and Measures 
 
There are three main types of evaluation approaches or paradigms for testing the 
effectiveness and acceptability of software tools: heuristic evaluation, 
observational/ethnographic, and user testing.  Heuristic observations are performed by 
human factors/human-computer interface experts based on established or agreed-upon 
criteria such as described by Nielsen (1992; 1993).  Observational studies involve 
recording of user activities while working with the product; recordings are made both 
manually and using audio/video recording equipment.  Ethnographic studies are of this 
type but they are distinct in that the researcher becomes “embedded” in the environment 
and the culture of the group being observed.  A notable ethnographic study of intelligence 
analysts was reported by Johnston (2003a).  User testing is a preferred method of 
evaluating software tools because it examines user performance on tasks of interest in 
controlled settings, with objective performance data such as times to complete tasks or 
errors made, and with subjective evaluations by users in the form of questionnaires and 
interviews. 
 
The focus of this report is on user testing.  Further, the focus is specifically on assessing 
the impact of tools or products based on their effectiveness in meeting their intended 
design requirements and criteria for success, as identified by stakeholders and developers.  
Thus, although the assessment of usability features such as ease of use, user interface 
design issues, etc., is important to the ultimate success of a product, this area of human 
factors has provided a well-established methodology and practices that need not be 
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described here, except insofar as they are affected by specific constraints imposed by user 
testing in the intelligence community.  The focus here is on user testing. 
 
The context of such testing is in realistic settings such as in actual operating intelligence 
analysis working groups or in similar environments.  One such environment is Battelle’s 
Colonial Place Operations (BCPO) facility, which is the home of the NIMD Glass Box 
analysis environment.  Battelle Glass Box analysts have been operating within this test and 
evaluation environment for over two years.  Another environment that is being used for 
testing and experimentation is at NIST facilities in Gaithersburg, MD, where experienced, 
reserve intelligence officers participate as part-time subjects in usability studies.  Both of 
these test environments enable researchers to control the nature of tasks, time available to 
perform tasks, the tools available, amount of collaboration possible, and so forth.  The 
Glass Box instrumentation, the tools being studied, and, in some cases, observations by 
evaluators and questionnaire/interviews provide data to support the usability studies.  
These environments enable the researchers to have a fair amount of control over many 
variables that affect performance, but by no means can they control all such variables as 
might be expected in laboratory experiments. A paper by Johnston (2003b) provides an 
appreciation of the kinds of variables that may affect intelligence analysis performance, 
including systemic variables (organizational, political), systematic variables (operations, 
information, reporting), idiosyncratic variables (psychological/cognitive limitations and 
biases, education, training, readiness), and communicative variables (formal and informal 
communications, technology for network access and collaboration). 
 
A more formal test and evaluation setting will be available at a future time through the 
Research, Development and Engineering Center (RDEC).  The RDEC is an operating IA 
facility that provides large numbers of analysts who may act as subjects in controlled 
experiments designed to test IA tools.  The RDEC provides perhaps the only test 
environment in a realistic/operational IA setting in which experiments may be performed 
involving groups with sufficient sample sizes to conduct statistical tests with sufficient 
power to detect meaningful experimental effects.  This enables experiments to be 
performed with sufficient controls, number/types of experimental/control groups, and 
numbers of subjects to overcome many of the methodological pitfalls that were described 
in Section 4.1.  However, tools to support IA must be pre-tested and vetted sufficiently to 
establish their worthiness before they move on to the RDEC test bed.  The scope of the 
present discussion is therefore largely focused on the less formal testing that is being done 
within the NIMD program at BCPO and NIST, or perhaps at individual NIMD contractor’s 
facilities. 
 

4.3 Mitigating Risks to Experimental Validity 
 
To help deal with some of the issues in studies that are constrained to provide less than 
“true experimental control” of variables, a number of “quasi-experimental” research 
designs have been discussed (e.g., Campbell and Stanley, 1963).  Some simple examples 
with varying degrees of scientific rigor are: 
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• The one-shot case study—a single group of participants is studied only once, 
subsequent to (or during) the “treatment” presumed to cause change (e.g., use of the IA 
tool).  This methodology has a total absence of control and has almost no scientific 
value.  Fortunately, the NIMD plans for evaluation do not follow this tenuous design. 

• The one-group Pretest-Posttest Design—This design is diagrammed as: O1   X  O2  
where O1 is the pretest, O2 is the posttest, and X is the experimental intervention.  In 
this design, time between observations is a threat to internal validity because there is no 
control or accounting for events occurring between the pretest and posttest.  This is 
close to the design for evaluation that has been in practice, and that is planned for 
future NIMD tool evaluations. 

• The posttest-only control group design—This is diagrammed as:   
R X  O2 
R X  O1, 
where R indicates random assignment to the experimental and control groups.   
This is a valid experimental design.  However, it requires a sample of subjects that can 
be divided into two groups (experimental and control groups), which is not generally 
possible for the NIMD evaluations.  It is a preferable experimental design that should 
be used if/when NIMD tools are introduced for evaluation into the RDEC. 

 
Thus, for NIMD tool evaluations, we are constrained by budget limitations and practical 
limits on the number of subjects to use a within-subjects pretest-posttest design. The 
performance of each analyst in the study should be compared with himself or herself.  
Examples of viable manipulations are: 
 
Example 1: 
1. Pretest: Analyst performs analysis without tool (as part of baseline period, for 

example) 
2. Tool Introduction and Training: Analyst receives training and has time to become 

familiar, if not proficient, with the tool. 
3. Posttest: Analyst performs analysis with the tool. 
 
An alternative to the Pretest activity above is for the analyst to perform the analysis with 
the NIMD tool, but without a particular function enabled.  This allows the effectiveness of 
the function to be assessed.   
 
Example 2: 
1. Pretest: Analyst performs analysis without tool (as part of baseline period, for 

example) 
2. Tool Introduction and Training: Analyst receives training and has time to become 

familiar, if not proficient, with the tool. 
3. Posttest 1: Analyst performs analysis with the tool 
4. Posttest 2: Analyst performs analysis with the tool, but without a specific function that 

is being tested. 
 
In example 2, it would be prudent to randomly order steps 3 and 4; that is, flip a coin to 
decide whether an analyst uses the complete functionality of the tool in step 3 and reduced 
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functionality in step 4, versus using the reduced functionality in step 3 and complete 
functionality in step 4.  This randomization helps to combat biasing results due to order 
effects. 
 
The preceding examples and discussion do not address a significant risk to validity in this 
experimental design: confounding of results due to the uncontrolled effects of task 
difficulty and/or to uncontrolled effects of individual (analyst) differences.  The problem 
with task difficulty is that it is impossible to give an analyst the identical task to perform 
under the pre- and posttest conditions, since once having performed the task the analyst 
and the problem will not be the same.  The only solution for a within-subjects design is to 
be able to assign tasks to pre- and posttest conditions that are generally “equivalent” in 
difficulty.1  This challenge of characterizing, and therefore controlling, task difficulty is 
addressed in the next section. 
 
Analyst individual differences are less of a problem for the design of the research than they 
are a problem for interpreting the results (e.g., the generality of the conclusions).  If it is 
possible to use analysts with different levels of experience on a problem, it will be easier to 
compare the utility of a tool for analysts with different “readiness” levels.  However, 
managing analyst experience as an experimental variable would require a larger sample of 
analysts to employ in the studies than is currently available.  This question should be 
addressed when larger samples of experimental subjects are available, as in the RDEC 
environment. 
 

5. Task Difficulty2 
 
Why is there a concern about understanding how to characterize or measure task 
difficulty?  The issue is fundamental to experimental methodology.  Task difficulty metrics 
are needed so that we can have some confidence that tasks (problems) chosen to be worked 
on during the evaluation are comparable.  A scientifically valid evaluation can be done 
only if we are able to "control" task difficulty as we study the impact of proposed tools.  
The challenge derives from the fact that it is impossible to use the same task for both the 
experimental and control conditions, particularly if the experimental and control conditions 
are both applied to each subject (a within-subjects design).  It is obviously not possible to 
“erase” the analyst’s memory and start fresh on a task if it has already been worked on in a 
prior experimental condition.  This issue is not as serious if the experiment uses a 
“between-subjects” design, but task difficulty still needs to be understood and controlled if 
the experiment aims to apply to a range of IA problems that vary in type or difficulty. 
 

                                                 
1 If a between-groups experimental design is used in which one group of analysts works on a task with the 
tool being tested (experimental group) and the other group works on the same task without the tool (control 
group), the confounding effects of task difficulty are eliminated.  This requires more subjects than would be 
available on a practical basis.  If this were possible, then care should be taken to randomly assign analysts to 
experimental and control groups. 
2 Material in this section has been submitted for publication (Greitzer, 2005). 
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5.1 Informal Conceptualizations 
 
There are many informal characterizations of what makes IA hard, including the oft-cited 
“information overload” problem, but the problem is much more complex.  The information 
overload problem is generally interpreted in terms of “too much data.”  However, it is 
equally common for analysts to struggle with “too little data.”  Moreover, the quantity of 
data, per se, would not seem to underlie the problem so much as the problems inherent in 
the data, such as consistency, reliability, heterogeneity.  Thus, for example, it is argued that 
a massive data set that tends to be consistent and homogeneous in its content or 
interpretation would not pose as difficult a problem as a much smaller data set that lacks 
consistency and homogeneity.  While heterogeneity is often described in terms of 
incompatible data formats, other possible manifestations of heterogeneity are even more 
challenging, such as the need to tie together multiple “threads” of evidence from disparate 
domains (financial, political, military, law enforcement, etc.) to produce a more complete 
picture that we call “situational awareness.”  A careful analysis and study of task difficulty 
dimensions will lead to a better understanding of these factors and their interdependencies.   
 
5.1.1 An Initial Set 
At a recent “Friends of the Intelligence Community” (FOIC) workshop, Bonnie Wilkinson 
(2004) presented some views on the dimensions of difficulty for IA tasks that provide an 
excellent summary of how the IC (informally) views task difficulty and associated 
performance challenges faced by IA professionals.  Wilkinson described the following 
dimensions of difficulty: predicting the future, human behavior, low observability, lack of 
physical/hard data, high data ambiguity, low confidence in sources, lack of specificity, 
multiple data times, multiple subjects, too many variables, many organizations, and 
insufficient time.  In an unpublished document, I examined these in a bit more detail 
(Greitzer, 2004), and the main points are repeated here. 
 
Predicting the Future is an excellent characterization of one dimension of task difficulty.  I 
suggested that the underlying dimension might be described in terms of Characterization 
versus Prediction, where characterization focuses on developing biographical profiles, 
company/country capability or science/technology profiles and the like; while prediction 
focuses on “what-if” analyses about hypothetical actions.  (As an aside, it is generally 
considered that prediction is a more difficult type of task than characterization).  
  
Human Behavior refers to the difficulty of reporting on the thoughts, motives, inclinations, 
or possible actions of individuals.  I suggested that an underlying dimension might be 
described as Sociological Complexity, where the focus of the analysis might be an 
individual, at one end of the dimension, and a group, a State, or a region at the other end of 
the dimension.   
 
The next several dimensions offered by Wilkinson are related to various aspects of the 
data, which I suggest might be combined into a general dimension termed Data 
Uncertainty: Low Observability, Lack of Physical/Hard Data, Data Ambiguity, Low 
Confidence in Sources, Data Specificity, and Multiple Data Times.  I have interpreted these 
to mean, for example, that behavior or characteristics being studied are not easily observed 
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or that they are difficult to interpret—which could arise from a lack of data, from 
ambiguous, deceptive, or unreliable data, or because the data are dynamic (changing over 
time).   This dimension is arguably the most difficult to characterize and to operationally 
define; it is possible that further study would lead us to separate this aggregated dimension 
into two or more dimensions.  To the extent that it is difficult to interpret or discriminate 
among these aspects of the data in operational/practical terms, we will retain this simplified 
“uncertainty” dimension for expediency.   
 
The next three difficulty dimensions suggested by Wilkinson are Multiple Subjects, Too 
Many Variables, and Too Many Organizations. These characteristics seem to relate to a 
dimension reflecting the extent to which the analysis topic is narrowly focused versus 
broad and open-ended.  For this reason I suggest the use of the term Breadth of Topic to 
encompass these factors.   
 
Finally, the last dimension offered by Wilkinson is Time.    To be sure, the amount of time 
available to conduct the analysis is a significant determinant of the difficulty in carrying 
out the task.  This has been observed in earlier experimental research (Patterson, Roth, and 
Woods, 2001) and cognitive task analyses (e.g., Hutchins, Pirolli and Card, in press).  Note 
that the time factor seems different from all the others mentioned above because it 
represents a variable that can be manipulated directly and independently in an 
experimental situation (i.e., one can control the time pressure by setting the deadline for 
the product).  Despite this distinction from the other factors, the time factor (perhaps more 
appropriately called Time Pressure) is included among the list of difficulty dimensions.  It 
is a valid experimental factor that is available for experimental manipulation (and it is 
being used currently in experiments conducted within the NIMD program). 
 
Another observation provided by Bonnie Wilkinson is that IA is difficult because 
intelligence assessments can change the future, and because there is no opportunity for 
immediate feedback on predictions about actions that haven’t yet occurred.  These are 
valid examples of what makes IA difficult and stressful, but beyond using the Prediction 
dimension that has already been described, there does not seem to be any further need to 
define an additional task difficulty dimension in terms of lack of feedback.  However, the 
feedback issue is certainly applicable to performance metrics – reflecting the extent to 
which the IA product was accurate or correct.  Performance metrics are a necessary and 
important topic in their own right, but beyond the scope of this paper. 
 
5.1.2 Some Additional Factors  
Data Availability.  In the spring of 2004, a number of IC professionals and researchers 
began an idea exchange on task difficulty concepts as part of an ARDA Metrics Challenge 
workshop.  John Bodnar (2004) provided a preliminary assessment of his perspective on 
task difficulty: “The degree of difficulty in assessing any WMD program (or indeed any 
problem) is related mainly to the data available.”  He suggested that one way to assess task 
difficulty is to compare the amount of data that is potentially “out there” on the topic with 
the actual amount of data that is realistically available (i.e., possible to obtain or perhaps 
already obtained).  Bodnar’s basic idea and approach to characterization of the data set 
suggests a Data Availability dimension.   
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Problem Structure.  In preparation for the ARDA Metrics Challenge study, further 
collaboration occurred in the spring of 2004 between Jean Scholtz and Emile Morse 
(NIST), Tom Hewett (Drexel University), and the author (PNNL).  This produced a 
questionnaire that was used for studying task difficulty in problems used for NIMD 
research (Glass Box analysis taskings) and for research on question answering methods 
and tools being conducted by ARDA’s AQUAINT (Advanced Question Answering for 
Intelligence) program.  Most of the proposed set of dimensions described above (and in 
Greitzer, 2004) were translated into a number of Likert scale questions.  An additional 
factor was added: Problem Structure (extent to which the problem is highly structured 
with a clearly defined objective, compared to the case in which the problem is ill-
structured and requires the analyst to impose a structure).  In addition, some supporting 
items were included in the questionnaire to collect information about the IA assignment, 
the product requested, and some analyst demographic variables.  A description of the 
questionnaire and some preliminary results is provided in Hewett and Scholtz (2004). 
 
Data Synthesis.  Another dimension that seems to be a factor in IA task difficulty is the 
need to synthesize multiple sources of information, also referred to as data fusion.  We will 
adopt this as a proposed Data Synthesis dimension.  As Hutchins et al. (in press) observe, 
data synthesis is particularly problematic when multiple sources of disparate types of data 
are involved, when different pieces of data have varying degrees of validity and reliability, 
and when different types of domain expertise are needed to analyze each type of data.  One 
of these task difficulty influences (data validity/reliability) is already addressed in the 
proposed Data Uncertainty dimension; another (analyst expertise) may be best represented 
by factors associated with analyst variables rather than task difficulty dimensions (and thus 
it may be considered outside the scope of the present discussion). 
 
5.1.3 Problem Complexity  
A concept missing from the above discussion is the notion of problem complexity.  Indeed, 
this notion has not received much attention in discussions about task difficulty among IC 
researchers—even though  it is fundamental to understanding the IA process, developing 
tools to support it, and defining metrics for task difficulty and performance effectiveness.  
The task difficulty concept relates to the mental processes involved in problem solving, 
which, despite a long history of study in psychology, still eludes our rigorous 
understanding.   While we have considered the dimension of Problem Structure to 
distinguish between well-defined problems and ill-specified problems, we have not 
focused sufficiently on the mental activity that makes up the analysis process itself.  As 
Heuer (1999, p. 31) observes:  “Intelligence analysts should be self-conscious about their 
reasoning process.  They should think about how they make judgments and reach 
conclusions, not just about the judgments and conclusions themselves.”  Most 
psychological research on problem-solving has been focused on well-defined problems: 
those for which we know a solution exists, and that we will recognize the solution when 
we find it (for example, we know when we solve a puzzle or prove a theorem).  Ill-
specified problems lack such tests because there are no criteria for “the correct answer” in 
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these problems.3  Real-world problems, including most IA tasks, are largely ill-specified.  
Nevertheless, we can gain some insight into such activities by considering what has been 
learned about problem solving with well-defined problems.  Psychological research shows 
that successful problem solving, particularly for well-defined problems, is characterized by 
two principles: it must be hierarchical, and it must be goal-directed (e.g., Newell and 
Simon, 1972).   “Hierarchical” means that complex problems must be decomposed into 
sub-problems until each sub-problem becomes simple enough to be solved—today this is 
referred to as “decomposition” (e.g., Heuer, 1999).  “Goal directed” means, for example, 
that the process is guided by heuristic principles that concentrate the search on promising 
regions of the problem space to avoid getting bogged down pursuing blind alleys.  For the 
purposes of defining task difficulty metrics, we can distill notions from the problem-
solving research literature and, as taught by Frank Hughes at the Joint Military Intelligence 
College, from philosophers and thinkers in the legal field, to describe a dimension that 
reflects the complexity of the analytical problem.  In modern and IA relevant terms, we are 
concerned about how many possible hypotheses must be considered in carrying out the IA 
task, and how much evidence must be gathered to “pull the threads” in pursuing answers 
and resolving questions about the status of these hypotheses.  We must be concerned about 
the total number of such threads to follow, and the level of reasoning that is required to 
reach a conclusion.  These are the ingredients of a dimension that reflects the complexity 
of the analytical problem.  Frank Hughes observes that the analysis activity has received 
insufficient attention:   
 

For many years, the intelligence collection process has best been described as the 
task of trying to collect everything with the hope of finding something.  This 
accounts in part for the sheer volume of information being gathered by the many 
agencies in the Intelligence Community.  But throwing massive amounts of 
information at an intelligence analysis problem will not, by itself, solve this 
problem.  What is so frequently left out of the equation is the process by which 
the information is analyzed…. 
 
Any intelligence analysis task involves three major ingredients that must be 
generated or discovered by an analyst: hypotheses (possible explanations, 
predictions, or conclusions), evidence, and arguments linking evidence and 
hypotheses.  (Hughes and Schum, 2003). 

 
Acknowledging, then, that a Problem-Complexity metric would be useful, what sort of 
computational approach might apply?  One possible approach could be based on the application of 
inference networks in the context of evidence marshalling and analysis (as provided in the 
teachings of Frank Hughes and David Schum, for example: Schum, 1999; Wigmore, 1937; 
Anderson and Twining, 1999; Tillers and Schum, 1988).  Inference networks may be represented 
graphically in diagrams using nodes and links between nodes that represent propositions.  
Therefore, one possible measure of complexity could be based on the number of nodes or perhaps 
on the pattern of links between the nodes of the network (Tillers, 2004).  An illustration is shown in 
Figure 5-1.   

                                                 
3 This is reminiscent of an age-old problem stated in the dialogues of Plato over 2000 years ago: “And how 
will you enquire, Socrates, into that which you do not know?  What will you put forth as the subject of 
enquiry?  And if you find what you want, how will you ever know that this is the thing which you did not 
know?”  (Plato) 
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a b
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Figure 5-1.   Graphical Representations of Three Examples of Inference Networks.  
Problem or inference complexity might be characterized by the number of links and/or 
nodes.  (a)  3 nodes; (b) 5 nodes; (c) 10 nodes.  Other, more complex, non-hierarchical 
inference networks may also be considered. 

 
Of course, use of such a measure (or possibly other measures of complexity for inference 
networks) requires that the solution has already been produced.  This is acceptable for after-the-fact 
measures, but less useful when attempting to select tasks that are comparable in difficulty to 
control experimental variables.  For such cases, it would be advisable to have expert analysts solve 
the problems first so such measures can be obtained before the tasks are used in an experiment.   
 
There are a number of other possible factors that have been implicated in the issue of “what makes 
IA hard” that have not been explicitly mentioned above, but that are implicit or related by 
association to those dimensions that have already been described.  High on this list is what is 
commonly referred to as “high cognitive workload” or “information overload.”  It is suggested that 
high workload can be understood as a result of introducing one or more of the task difficulty 
dimensions already described.  For example, dealing with an overwhelming stream of information 
produces high cognitive workload through its imposition of time pressure along with other 
dimensions such as data uncertainty, data synthesis, and problem complexity.  Information 
overload, similarly can be described in terms of one or more dimensions such as time pressure, data 
availability, and data synthesis.  
 

5.2 Working Set of Task Difficulty Dimensions 
 
The dimensions and concepts discussed in the previous section are summarized in Table 5-
1, which provides a recommended set of Task Difficulty factors.  The table is divided into 
two sections: Better-defined factors (i.e., they have operational definitions and have been 
applied in recent research, e.g., supporting the NIMD and Metrics Challenge programs); 
and factors that are less well-defined (they have not been applied using operational 
definitions, and they require considerably more research to develop appropriate metrics 
and means to measure them). The last three factors shown are members of this second 
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category of dimensions that need a considerable amount of further study to develop 
measurable metrics and/or to further refine the concept. 
 
As a preliminary assessment of the adequacy of at least some task difficulty dimensions, a 
questionnaire incorporating some of the factors discussed here was administered to 
working analysts (Hewett and Scholtz, 2004).  The questionnaire included five of the 
factors from the first section of Table 5-1 and six additional factors, plus an overall task 
difficulty factor.  They obtained a correlation of 0.85 between the average difficulty ranks 
of each task over the eleven factors with the task’s average overall difficulty rating. While 
this result is encouraging, there were a limited number of analysts and, importantly, the set 
of IA tasks that made up the survey comprised problems that were similar with respect to 
several of the proposed difficulty dimensions (e.g., Characterization vs. Prediction, 
Sociological Complexity, Breadth of Topic, Problem Structure; and Data Synthesis). 
 
 

Table 5-1.  Recommended Set of IA Task Difficulty Factors 
 
Factor Description 
Factors That Have Been Defined at Least Operationally 
Characterization vs. 
Prediction 

Does the task require a description of current capabilities (situation 
assessment) or does it ask for a prediction about future capabilities or 
actions? 

Sociological Complexity Does the task focus on the behavior of an individual, an organization, a 
group, an industry, a State, or a region? 

Time Pressure Number of hours/days available to the analyst to conduct the task. 
Breadth of Topic How narrow/focused versus broad/open-ended is the topic?  Does it deal 

with many variables or a few? 
Data Availability Relative amount of data that is realistically/practically accessible to the 

analyst compared to the total amount of data that is considered 
“potentially” available. 

Problem Structure The extent to which the problem is highly structured with a clearly defined 
objective, compared to the case in which the problem is ill-structured and 
requires the analyst to impose a structure 

Factors That Are Less Well-Defined (Requiring Further R&D) 
Data Uncertainty A general (ill-defined as yet) construct that reflects the heterogeneity, 

consistency, number and reliability of sources, and confidence in the data. 
Data Synthesis The extent to which data must be integrated and analyzed from multiple 

sources of disparate types of data (including source types and data formats 
challenge data ingest capabilities). 

Problem Complexity A measure of complexity of the reasoning process used in obtaining the 
solution.  Research on measures of complexity of inference networks may 
be applicable. 

 

5.3 Speculation about Further Research on Task Difficulty 
 
At this early stage of research, we do not have a deep understanding of the factors or 
dimensions that underlie IA task difficulty, but the concepts described here and listed in 
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Table 5-1 represent a start.  One area for research is to conduct additional studies with a 
greater number of participants and a broader range of problems, with a goal of further 
refining the initial set, to determine if any factors have been omitted and to assess the 
extent to which the existing factors are independent.  The extent to which these factors are 
predictive and independent is not known: Additional research is needed to apply statistical 
analyses to this and related questions.    Some questions to address through questionnaire 
and performance studies are: 
 
• As has been suggested, the study by Hewett and Scholtz (2004) should be replicated in 

a follow-up study with a more diverse set of IA tasks.  Also, the factors addressed in 
the questionnaire should be “tightened up” based on arguments that I have made above.  
For example, Hewett and Scholtz included a question on analyst experience; while this 
is a relevant “demographic” or analyst variable, it is not a task variable and does not 
belong in a list of task difficulty dimensions4.  A question to address in a follow-up 
questionnaire study would then be: Looking at the nine possible difficulty factors in 
Table 1, to what extent do these factors “predict” an overall task difficulty judgment 
for IA tasks?  

• Another question that applies to analysis of questionnaire data is: Would a multiple 
regression analysis reveal dependencies in the proposed dimensions? Would it reveal 
stronger correlations (regressions) for some of these factors on overall task difficulty 
than for other factors?  (Which ones are the strongest determinants of difficulty?) 

• Would it be possible to extract/derive sufficient meaning from task descriptions to 
enable them to be “sorted” or “valued” along any of the proposed dimensions? 
Dimensions that would most likely be amenable to such analysis are: Characterization 
vs. Prediction, Sociological Complexity, Time Pressure, Breadth of Topic, and 
Problem Structure.  It is possible that key words and semantic/ontological relationships 
could be used to identify these factors.  It is noted that the other factors depend to a 
large extent on the nature and availability of the data or on the complexity of the 
solution and possible alternatives—information that would not be known without 
actually conducting the analyses. 

 
Beyond the use of survey-based studies, it would be desirable to conduct a study and an 
analysis of behavioral data to see if one can find correlates of the proposed task difficulty 
variables in data collected during IA activities.  For example, data collected using the Glass 
Box instrumentation has been used to examine behavioral correlates, such as an analysis of 
dwell times to support inferences about the analyst’s interest (Sanquist, Greitzer, Slavich, 
Littlefield, Littlefield, and Cowley, 2004). The analysis of behavioral data may serve to 
validate, disambiguate, or further refine the proposed dimensions into a more useful set 
that can be used to guide further research.  Some speculative research questions about such 
behavioral correlates of proposed task difficulty dimensions are: 
 

                                                 
4 Experience certainly affects performance—but this does not mean that it should be incorporated into 
difficulty metrics.  A more familiar example may clarify the distinction: Readability measures, such as the 
Flesch Reading Ease or Flesch Kincaid Grade Level (e.g., Flesch, 1994), are based entirely on the content of 
the material (number of words per sentence and number of syllables per word) and are meant to be 
independent of an individual’s reading ability.  
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• On data uncertainty: Would it be useful to collect data from (Glass Box) analysts on 
their level of confidence in evidence that they collect?  Current Glass Box functionality 
enables analysts to easily indicate “relevance” of material, and a confidence measure 
could be implemented in the same way.  Potential advantages of this behavioral 
measure are that it may shed light on the extent of uncertainty in the data – i.e., the 
Data Uncertainty dimension.   

 
• On data synthesis: As described in Table 5-1, this factor generally refers to the multiple 

data formats and types that may need to be digested and analyzed.  It is likely that 
expert analysts can provide a reasonable assessment of the extent to which this factor 
plays a role in a given IA task merely by responding to a questionnaire item, similar to 
those that we created for the Metrics Challenge project (Hewett and Scholtz, 2004).  
The research community has had an opportunity to observe analysts struggling with the 
synthesis and interpretation of open source data or data that have been made available 
through artificial sources, which is a formidable problem in itself; the data synthesis 
problem is compounded in classified environments in which data are collected from 
even more diverse sources, with varying and incompatible formats.  Data synthesis 
presents a significant challenge for both open source and all-source analysts, and a 
difficulty metric would be useful in evaluating the impact of data ingest tools.5   

 
• On problem complexity: As described in the discussion of problem solving and 

evidential reasoning, it is well-established through behavioral research and common 
sense that one of the most effective ways to deal with complexity is to “divide and 
conquer” – in other words, decomposition of the problem into simpler parts.  It is 
almost a “given” that analysts do this, whether or not it is done consciously.  The 
question is: Can such strategies be observed in (actually, inferred from) the data 
collected through such means as the Glass Box instrumentation?  On one level, it is 
possible to see evidence of task decomposition by looking at sub-tasks that analysts are 
free to create for themselves while planning and conducting the analysis.  Similarly, 
certain organizational artifacts may be evident in the file system structure that analysts 
set up and use on their computers.  On a more challenging (and indirect) level of 
analysis, can such decompositions be inferred from queries entered in the Internet 
browser?  In any of these cases, such decompositions could be used to estimate the 
complexity of the analysis task—not as direct a measure as would be obtained by 
analyzing an inference network, but perhaps more expedient since analysts do not 
explicitly create such networks to support their reasoning process. 

 
 
 

                                                 
5 It has been observed that existing visualization and analysis tools—designed to support the collection and 
synthesis of such data—do not deal adequately with the ingest of such data.  There is a critical need for such 
visualization and analysis tools to provide a more usable front-end that analysts can use, with only a limited 
amount of training, to support ingest of such data (e.g., Badalamente and Greitzer, 2005). 
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6. Performance Measures 
 
A third challenge in evaluating the impact of IA tools concerns the need for performance 
measures.  Performance measures are measured quantities used to compare performance 
with and without tools.  Performance measures are needed to answer questions such as: 
Does tool X improve the throughput of analytic tasks of type Y?  Does it yield more 
efficient or higher quality output for certain types of tasks, or for certain “phases” of 
analysis?  In considering possible impacts of tools and technologies, it is important to 
consider not only the effects on the collection, analysis, and production processes, but also 
on the vetting process (e.g., will a proposed tool/technology make it easier or quicker for 
other IA professionals and clients to assess and interpret the IA product?).    
 
Performance measures are usually interpreted in terms of usability.  There are several 
sources of established guidelines for usability testing (e.g., Nielsen, 1993).  Commonly 
used criteria include efficiency, learnability, and memorability.  Usability measures 
address the experience of users—whether or not they found the tool useful, easy to learn, 
easy to use, and so forth.  Often, users are asked to provide this sort of feedback using 
qualitative measures obtained through verbal (“out loud”) protocols and/or post-hoc 
comments (via questionnaires, interviews, ratings).  Additional usability criteria address 
what might be called the utility of the tool—how effective was the tool in supporting the 
user’s needs?   Quantitative measures that assess utility include efficiency in completing 
the task (time, accuracy, completeness).  These will be most useful in comparing the utility 
of alternative tools or assessing the utility of a given tool versus baseline performance 
without the tool.   
 

6.1 Measures and Metrics 
 
In Section 5 we discussed the need to characterize task difficulty and offered some 
conceptualizations of metrics that could be used.  In this section we discuss measures.  
Before going further, we should be sure that there is a common understanding of the 
difference between metrics and measures in this context.  We have been using the term 
“metrics” to indicate a standard of measurement.  Consider the concept of distance: in 
mathematics, the Euclidean metric is but one of a number of ways to conceptualize 
distance.  In our daily lives, we often use the concept of time to characterize distance—as 
in the example: “The hotel is only a 10 minute drive from the airport.”  Metrics are chosen 
for their relevance in characterizing the quantity or quality of interest.  Units of measure 
are associated with specific methods of determining these quantities or qualities—for 
example, miles represent a unit of measure for distance.    
 

6.2 Some Qualitative Measures 
 
Measures of effectiveness come in several varieties, but all are aimed at assessing the 
impact of the tool.  User satisfaction is a necessary, but not sufficient measure.  Overall 
quality of the output is a useful measure—the AQUAINT Metrics Challenge project used a 
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creative ranking method to measure product quality that takes advantage of opinions from 
multiple judges to help improve the objectivity of the measure.   
 
We can measure the quality of the output of a process, a tool, or an entire effort.  For IA 
products, the customer can assess the quality of a report; if reports are produced using 
different methods or tools, then these reports can be assessed individually or they can be 
ranked to compare quality.  NIST used such a method by asking analysts to rate the quality 
of reports generated by different analysts working on the same problem, using various 
tools that were being evaluated (Hewett and Scholtz, 2004).  
 
When NIMD products are being evaluated within the Glass Box environment, users are 
able (and should be encouraged) to provide qualitative ratings at any level they wish.  The 
Glass Box annotation function allows the analyst to make a quick annotation on the quality 
of any aspect of a tool that is deemed noteworthy.  An advantage of using this feature (over 
the alternative of waiting until the task or day is finished and filling out a general-purpose 
questionnaire at that time) is that the analyst who waits to make such judgments is more 
likely to forget about such fine details altogether.   
 
Table 6-1 lists some typical qualitative measures. 
 

Table 6-1.  Typical Qualitative Measures of Effectiveness 
 
Measure Example 
Quality of Product  
• Points or grades assigned to 

products by experts (or users) 
• Products are ranked by experts 

(or users) 

 
• Experts judge quality of a report on a 1-10 

scale 
• User ranks quality of hypotheses delivered by 

a hypothesis generation tool 
Confidence  
• User confidence in findings  
 

 
• User rates confidence in result (e.g., relevance 

rating for documents offered/returned by tool) 
Cognitive workload 
• Difficulty assessment ratings  
 
• Cognitive workload ratings 

(NASA Task Load Index, TLX; 
Hart and Staveland, 1988) 

 
• User rates difficulty of performing a task using 

a tool 
• User ranks the task on set of criteria 

established for the NASA TLX 

Standard usability measures* 
• Efficiency 
• Learnability 
• User control 
• Consistency 
• Error prevention 
• Feedback 

 
• These may be addressed qualitatively using 

questionnaire items.  Some may also be 
addressed quantitatively… see Section 6.3. 

*See Nielsen (1992) for a more complete list of measures used in heuristic evaluations. 

 16



FL Greitzer    
 

6.3 Quantitative Performance Measures 
 
Usability guidelines that suggest criteria such as efficiency, learnability, memorability, 
preventing errors, etc. (e.g., Nielsen, 1992; 1993) can be applied in a general way, such as 
indicated in Table 6-1 above, to assess the overall experience of users.  More objective, 
performance-based measures represent an important, and certainly a more challenging, 
means of assessing the impact of tools on performance.  To do this effectively, a close 
collaboration is needed between the tool developers and cognitive scientists/human factors 
researchers.  For while general usability guidelines suffice for the general-purpose usability 
testing that is prevalent in the field of product design and application development, the 
level of feedback that is gained may not be sufficient to meet the specific goal of the IC to 
deploy effective tools that will have an impact and that will be used.   
 
A more detailed evaluation is necessary to allow IC stakeholders to answer the question, 
“Should the investment be made to deploy this tool in the intelligence community?”  For 
regardless of the monetary investment that went in to the development of a prospective 
tool, the cost of training, maintaining, and sustaining the tool are substantial future costs 
that should be avoided if it is determined that the tool does not meet the needs of its users.  
The only effective way to assess this question is to conduct more specialized evaluations 
that are based on explicit performance criteria and requirements.  These should be obtained 
from the stakeholders who funded the development and from the developers, who are in 
the best position to identify specific functions and features that they expect to positively 
impact IA performance.  To stimulate the specification of these detailed criteria, one 
should ask: 
 
• What aspects/phases of the IA process are most affected by the application of the tool?   
• How will the tool affect this performance?  These effects should be manifested in 

measures such as time to perform an activity, accuracy of the result, completeness of 
the result, etc.   

• What data can the tool provide that are not available through any other means?  There 
is the concept of measures obtained "outside" the tool (such as measures provided by 
examining Glass Box data) versus measures that are best provided by the tool, given 
that the tool captures and logs such data.  If we're trying to assess the effectiveness of a 
tool in enhancing an analyst's cognitive activities, then in a real sense we must rely on 
these same tools to provide relevant data—for such data may not exist anywhere else.6 

 
6.3.1 Examples of Quantitative Measures 
Table 6-2 shows some examples of possible performance measures that may be obtained if 
the tool developer makes plans in advance of the evaluation studies to record such data.  In 
some cases, the Glass Box instrumentation may also be able to obtain such data—the likely 

                                                 
6 For example, suppose that a tool helps the analyst determine relationships among three events that are part 
of a large collection of data.  Analysis activities that the tool helps the analyst perform, such as manipulating 
representations, examining elements of events, comparing facts among different events, etc., are expressly or 
indirectly observable by the tool itself, but most likely not amenable to monitoring or recording by any other 
software (however, the Glass Box logging function provides a convenient means of storing system data 
provided by tools that are integrated with the Glass Box). 
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source of the data is indicated in columns two and three.  Some measures must be 
determined by a human, as shown in column four.  In several cases, the notion of “target 
criteria items” is used to represent items that are identified as success criteria for the 
products being evaluated.  For example, a product designed to generate/track hypotheses 
should be evaluated in part on the basis of the number of “good” hypotheses that are 
generated compared with a baseline, and in particular compared with what experts consider 
to be the most relevant and important hypotheses.  Similarly, products that support 
evidence marshalling should be evaluated in terms of the number of appropriate 
documents, URLs, etc. that they yield in comparison with baseline data and expert 
judgments.  Other variations on such measures should also include the number of target 
items missed and the number of useful/relevant items produced that were not considered a 
priori (this reflects the ability of the tool to facilitate novel intelligence).  Other 
measurement concepts relate to temporal factors that reflect efficiency and effort. 

 
Table 6-2.  Examples of Quantitative Performance Measures 

 
Examples of Measures Tool 

Log 
Glass 
Box 

Human/
Manual 

 
Quality—measures of Accuracy 

   

Comparison with “expert” solution   √ 
Percent agreement between system and analyst   √ 
Product correctness compared to established criteria   √ 
Amount of evidence used in analysis √   
Number of target criteria items* considered by system √   
Number of target criteria items missed by system   √ 
Number of new/novel items produced**    
Does analyst choose to use tool when freely available? √ √ √ 
 
Temporal—Measures of Efficiency 

   

Time spent solving problem √  √ 
Time spent with tool compared with other applications   √ 
 
Workload—Measures of Effort  

   

Number of queries made √ √  
Number of links examined √ √  
Depth of links examined √ √  
Number of documents read (accessed)  √  
Number of times each document was accessed  √  
Number of steps needed to perform a function √   
Rate of growth of the draft report document  √  
* Target criteria items, as described in the text, include variables, hypotheses, documents found, etc. that 

experts identify as relevant and important data that should be produced—i.e., success criteria. 
**Novel items, as described in the text, are data or information that was not identified a priori as target 

criteria items. 
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Most of the examples in Table 6-2 reflect relatively high-level performance measures.  
Exceptions are measures of effort such as depth of links examined, number of steps needed 
to perform a function, and rate of growth of a report document.  These measures are more 
difficult to obtain, but may be worth the effort because of their greater potential for 
illuminating the extent to which an IA tool is effective in augmenting the analyst’s 
cognitive process.  Therefore, at the risk of providing more information or detail than some 
readers would welcome, consider another example and a description of a more detailed 
elaboration of performance criteria that could be used to evaluate IA tools.   
 
Hughes and Schum (2003) have carefully described the construction of an argument, 
which is a chain of reasoning that connects evidence to hypotheses of interest in the 
analysis.  Figure 6-1, adapted from Hughes and Schum (2003), shows but one of many 
chains of evidence in an inference network that would represent the thought process behind 
an IA product.  As described by Hughes and Schum, links may be characterized in terms of 
uncertainty about the credibility of the evidence.  Reasoning from one link to another is 
justified by generalizations that provide rationale for such reasoning, and evidence used in 
the argument may be directly relevant or indirectly relevant (ancillary—i.e., not directly 
relevant but that can be inferred).  Hughes and Schum observe that “generalizations and 
ancillary evidence supply the ‘glue’ that holds our arguments together.”  

Hypothesis

Argument

Directly Relevant Evidence

Generalization

Ancillary Evidence

Arguments 
are chains of 
reasoning 
often having 
many links.

Figure 6-1.  Argument Represented as a Chain of Reasoning.  (After 
Hughes and Schum, 2003). 

 
 
 
Consider an IA tool that is designed to help the analyst identify hypotheses and marshal 
evidence that will ultimately form the basis of the analytic product.7  A detailed analysis of 
data collected during the IA task should be able to identify hypotheses, directly relevant 
evidence, and ancillary evidence that are used in the argument.  (Generalizations may not 
be directly observable in the data, as they may result from tacit knowledge.)  For the 
observable data, consider possible “outcomes” that may be extracted from the data to 

                                                 
7 The arguments described here may be applied to any basic “elements” of an IA product that can be 
identified by “experts” as important, necessary, critical, etc.  Hypotheses and evidence are used here for 
illustrative purposes. 
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assess the performance of the human-machine system.  Outcomes may be either successful 
discovery/identification of important concepts or failures to find or reach conclusions 
about such concepts.  Some outcomes may be attributed primarily to the analyst, some to 
the tool, and some to their integration or human-computer interface.  One purpose of 
attempting to conduct this more detailed analysis is to distinguish among the effects of the 
system, the human, and the joint human-computer system.  
 
A possible analysis approach is inspired by early work of Kantor (1980) for evaluating 
library science applications, which was recently recast to apply to the evaluation of 
question-answering systems for intelligence analysis.8  Kantor specifies a chain of 
behavior (failure types) that exhibits a natural, logical order, and that associates specific 
“atoms” of information with each step.  Some elements of the chain represent failures of 
system functions and others may be the human’s responsibility—the key is that each 
function is dependent upon the successful performance of preceding steps in the chain.  As 
an example using our context, consider the possible ways that the human-computer system 
might fail to identify a specific hypothesis, H: 
 
Potential Failures in the Chain of Behavior Possible System 

Limitation 
Possible User 
Limitation 

A. The system did not generate H for the analyst to 
consider 

Hypothesis 
Generation 

 

B. Not A, but the analyst did not examine H 
 

 Attention, Information 
overload 

C. Not A or B, but the system did not provide 
evidence E to support H  

Evidence 
Marshalling 

 

D. Not A, B or C, but the analyst did not examine E User Interface* Attention, Information 
overload 

E. Not A, B, C, or D, but the system did not 
properly associate E and H to validate H  

Hypothesis Tracking  

F. Not A, B, C, D, or E, but the analyst did not 
accept E as evidence for H  

 Judgment 

G. None of the above, but the analyst did not 
interpret H properly  

 Interpretation 

*Ideally, either the system or the user should be identified as responsible for a shortcoming shown in a row.  Here, it does 
not appear feasible to distinguish system- from user-limitations without further study. 
 
By applying this structured approach to identified steps in a process, it may be possible to 
specify performance measures and success criteria that can be used to identify needs for 
system improvements to correct its deficiencies or to accommodate user limitations.  Steps 
in the IA process have been described by several researchers based on cognitive task 
analyses, but it is likely that it would be necessary to add more detail about the cognitive 
process and how the IA tool is used. This evaluation research approach deserves further 
consideration.  For more detailed discussions of cognitive models, cognitive task analyses, 
and the coupling between human and computer components of a system, see D’Amico et 
al. (2004),  Elm (2004), Badalamente and Greitzer (2005), and Woods (2005).    

                                                 
8 Material prepared by Paul Kantor for the AQUAINT Program Winter 2005 Symposium, Palm Springs, CA, 
February 2005. 
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6.3.2 Measures of Effectiveness 
Measures of effectiveness (MOE) are derived from the performance measures.  In some 
cases, a MOE is virtually the same as a performance measure—e.g., a grade/rating/score 
given to a product by an expert evaluator.  In many cases, performance measures are used 
or combined to produce MOEs.  MOEs should directly reflect a product’s success 
criteria—i.e., if a product is designed to improve the search/evidence marshalling process, 
then one or more MOEs should be developed that reflect this capability.  An illustrative 
example is provided in the box below and in Figure 6-2. 
 

Illustrative Example: Impact of a Search Tool 
 

Consider the situation in which we assess the impact of a tool that is designed to improve evidence 
marshalling by enhancing search capabilities.  One measure of performance is the number of 
documents or URL “hits” that the tool provides to the analyst for further study.  Underlying this is a 
collection of increasingly specific sets of items.  The total collection (“universe”) of items returned 
by the search tool is designated {U}.  Some of these items appear to be relevant and are 
investigated further (set {UI}, a subset of {U}); some of those are found to be important and are 
used in the analysis (set {UA}, a subset of {UI}); some of those are even cited in the final report (set 
{UR}, a subset of {UI}).  There is a collection of items that are not relevant and never investigated 
(the set {U}-{UI}).  One possible derived efficiency measure of interest is the proportion of items 
that are actually used in the analysis—e.g., the number of items in set {UA} divided by the total 
number of items returned in set {U}, which we can denote E =  NA/N where NA is the size of set {UA} 
and N is the size of set {U}.  This measure can be obtained for the tool being evaluated (ET) as well 
as for a “standard” or baseline tool (ES) such as Google.  A MOE might then be the ratio of the 
respective measures, ET/ES.  A success criterion might be to realize a 50% improvement in this 
ratio, or ET/ES = 1.5.  
  

{U}

{UI }

{UA }

{UR }

{U}   = all items found

{UI }  = items investigated

{UA } = items used in analysis

{UR } = items cited in report

Sets of Items Returned by Tool

Possible efficiency measure is 
E = NA/N, the ratio of the number 
of items analyzed to the total 
number of items found (0<E<1).

Good search tools should return 
few extraneous items, leading to 
values of E near 1.

Illustrative Example of Search Tool Efficiency

Figure 6-2.  Illustration of One Form of an Efficiency Measure Calculation. 
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7. Summary and Recommendations 
7.1 Summary 
 
There are some very interesting—and difficult—issues that need to be addressed in order 
to conduct a technically-sound evaluation of the impact or effectiveness of a tool.  Three 
major issues and challenges concern: (1) research methodology/experimental design issues 
aimed at achieving the most objective, scientifically valid conclusions based on the 
research; (2) metrics for task difficulty/complexity that may be used to manipulate or 
control this important task variable; and (3) performance measures for the effectiveness of 
the tool.  These three areas are intimately inter-related: If our 
judgment/method/approach/measures are faulty in any one of these three areas, the overall 
value of the evaluation is at risk.   
 
This report has developed in more detail some of the initial thoughts that were outlined in a 
draft report (Greitzer, 2004) focused on evaluation/research methodology and task 
difficulty metrics within the context of evaluation challenges for NIMD products.  The 
present report builds on this earlier work by discussing the need to design robust and valid 
experimental or quasi-experimental research to support evaluation of new tools and 
technologies; by recommending some task difficulty metrics as an initial step in the 
complex process toward defining rigorous research methods and approaches to assessing 
the impact of IA tools; and by discussing the need for and concepts for performance 
measures to be used in tool evaluations. 
 

7.2 Recommendations 
 
Recommendations on evaluation methodology, task difficulty metrics, and performance 
measures follow from the considerations and discussion in the three major sections of this 
report: 
 
• For evaluation of IA tools, use of a “one-shot case study” is not recommended because 

it does not provide any control over variables that could confound the results.  
Between-group experiments provide the best “experimental controls” of factors that 
threaten the validity of the evaluation, but it is recognized that the number of subjects 
required for such experiments is not typically available.   

 
• A within-subjects pretest-posttest design is recommended for NIMD evaluations 

because it does not require as many subjects as between-groups experiments.  The 
purpose of the pretest is to provide baseline performance data.  The challenge to 
validity is to be able to pick experimental analysis tasks that are relatively equivalent in 
difficulty. 

 
• There is a need to better understand task difficulty.  A research priority should be to 

develop task difficulty metrics that are useful and practical and that may be used to 
support evaluation studies. 
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• To develop meaningful performance measures, tool developers should identify success 

criteria that indicate when the tool has met its objectives and performance 
requirements.  Performance measures should be closely tied to success criteria. 

 
• In addition to subjective data that are relatively easily obtained through ratings and 

questionnaire methods, objective, behavioral performance measures should be 
identified.  Objective measures may be based on temporal factors or on the extent to 
which the human-computer system is successful in meeting specific performance 
objectives.   

 
• Performance measures should not be limited to data that are captured through 

traditional methods such as usability testing: 
 

o One example of “out of the box thinking” about performance measures is to 
consider the impact of a tool on the vetting process as well as the analysis 
process (time or efficiency benefits are possible throughout the “life cycle” 
of an intelligence product).   

o Research should focus on development of performance measures based on 
criteria other than subjective ratings or high level/global ratings of overall 
quality.  Examples of more detailed performance measures were provided, 
and should be studied further. 

 
• Measures of effectiveness may be defined as functions of the more basic performance 

measures.  Examples of some new ways of conceptualizing measures of effectiveness 
were discussed that may provide additional insights about the locus of the effect of a 
tool or method, or the locus of the deficiencies in the human-computer system that 
need improvement. 

 
 
 
Developing a useful, predictive set of IA task difficulty metrics and associated measures is 
important to the IC community, researchers, and stakeholders because such measures are 
needed to assess the impact of new methods and tools that are being considered for 
introduction into the field.  It is hoped that the present paper has been successful in laying 
out the overall research issues and challenges as well as laying some groundwork for 
development of operationally defined difficulty metrics and performance measures to 
support the intelligence community. 
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