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The solid-on-solid kinetic Monte Carlo model of Lasaga and Blum �Geochim. Cosmochim. Acta 50,
2363 �1986�� for dislocation-controlled etch-pit growth has been extended to the growth of etch pits
under the control of multiple dislocations and point defects. This required the development of
algorithms that are O�103�–O�104� times faster than primitive kinetic Monte Carlo models for
surfaces with areas in the range of 1024�1024–4096�4096 lattice sites. Simulations with multiple
line defects indicate that the surface morphology coarsens with increasing time and that the
coarsening is more pronounced for large bond-breaking activation energies. For small bond
breaking activation energies dissolution enhanced by line defects perpendicular to the dissolving
surface results in pits with steep sides terminated by deep narrow hollow tubes �nanopipes�. Larger
bond breaking activation energies lead to shallow pits without deep nanopipes, and if the bond
breaking activation energy is large enough, step flow is the primary dissolution mechanism, and pit
formation is suppressed. Simplified models that neglect the far field strain energy density but include
either a rapidly dissolving core or an initially empty core lead to results that are qualitatively similar
to those obtained using models that include the effects of the far field stress and strain. Simulations
with a regular array of line defects show that microscopic random thermal fluctuations play an
important role in the coarsening process. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3021478�

INTRODUCTION

Mineral dissolution plays an important role in numerous
geological processes over a wide range of time and length
scales. It provides a source of dissolved ions that can form
new mineral phases, react with atmospheric gasses, and pro-
vide nutrients in soils and surface water. The dissolution of
minerals and their precipitation, or the precipitation of new
minerals, plays an important role in the rheological behavior
of the Earth’s crust,1,2 and these processes are also important
in processes such as oil recovery, the formation of commer-
cially important mineral deposits, and the behavior of metal-
lic and radioactive contaminants in the subsurface. The for-
mation of etch pits is prominent in most mineral dissolution
processes,3 and it is widely believed that accelerated disso-
lution in the vicinity of dislocations is an important, often
dominant, process during mineral dissolution.4 Mineral dis-
solution by carbonic acid and the precipitation of carbonates
by the reaction of dissolved metals and carbonate play a
dominant role in the long time scale carbon cycle,5 and the
dissolution and precipitation of minerals also play an impor-
tant role in the assessment of proposed carbon sequestration
processes and their potential environmental impact.6,7

The formation of etch pits is important in other
substances,8–11 and etching is still being used to investigate
defects in technologically important materials. In addition,
the role that dislocation induced etch pits play in the control

of surface morphology in electronic and optical devices is
also an active area of research with important
applications.12,13 There is also evidence that etch pits may
play an important role in biological mineralization and dem-
ineralization processes.

The formation of distinct pits is a common occurrence
during the dissolution of low index crystal surfaces, and in
many cases it has been demonstrated that the growth of etch
pits is associated with defects in the crystal structure. In par-
ticular, the nucleation of an etch pit at the point where line
defects �dislocations� emerge from crystal surfaces has been
used to study the distribution14–17 and behavior18 of disloca-
tions and to determine their density. Much of the work on
crystal dissolution has traditionally been focused on the evo-
lution of surface morphology in the immediate vicinity of
isolated defects.19–23 However, the disordered spatial distri-
bution of defects �particularly extended defects� in naturally
occurring and synthetic crystals leads to the development of
complex surface morphologies that cannot easily be under-
stood in terms of the geometry of etch pits formed in close
proximity to isolated defects.24–26 Consequently, it is impor-
tant to develop methods that can be used to simulate the
simultaneous growth of interacting etch pits associated with
a large number of diverse defects. The objective of this work
is to create a basic framework for such simulations using a
simple cubic crystal lattice as an example. To achieve this
objective, it was necessary to develop kinetic Monte Carloa�Electronic mail: kevin.rosso@pnl.gov.
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models that are efficient for lattices that are large enough to
contain a large number of defects at realistic densities.

The rate of mineral dissolution may be limited by either
transport processes or by reaction processes. In this paper,
we focus on reaction-limited dissolution processes, which
are dominant when the rates of surface reaction are slow
and/or diffusion distances are small. Diffusion distances can
be reduced by using rapid flow rates to reduce the thickness
of the fluid boundary layer, but the formation of very rough
surfaces and/or deep pits may lead to a crossover from
reaction-limited dissolution at early times to transport-
limited behavior at later times. These effects are not consid-
ered in this work.

The dissolution process was simulated using a three-
dimensional, cubic lattice, kinetic Monte Carlo model, very
similar to that used by Lasaga and co-workers.19,22,23 In this
model, each site on the cubic lattice is considered to be oc-
cupied by either fluid or solid. The model does not attempt to
simulate the details of surface reaction processes. Instead, the
dissolution of the solid is represented by the conversion of a
solid site at the surface �a solid site with one or more neigh-
boring fluid sites� into a fluid site. A “solid-on-solid” model,
which restricts the dissolution to the highest occupied solid
site in each column of the lattice, was used. The solid-on-
solid approximation, which prevents overhangs from form-
ing and simplifies the “book keeping” involved in the simu-
lations, has been used extensively in kinetic Monte Carlo
models for dissolution and growth27–30 including models for
pit growth.31 In the kinetic Monte Carlo model, it is assumed
that the rate of dissolution of a solid site on the top of a
column of solid sites is given by

Rdiss = Ae−�Ea/kBT�, �1�

where A is the frequency factor, Ea is the activation energy
for removal of that site, kB is the Boltzmann constant, and T
is the absolute temperature. As is common in physics appli-
cations, energy units of kBT were used in this work. The
activation energy that must be overcome to remove �dis-
solve� a solid site is assumed to be proportional to the num-
ber of occupied, or solid, nearest neighbors �the coordination
number�, n. Under these conditions, Eq. �1� can be replaced
by29

Rdiss = Ae−�nEb�. �2�

The activation free energy for the dissolution of typical min-
erals lies in the range of 30�Ea�75 kJ /mole �Refs. 32–34�
and kBT=2.328 kJ /mole at 280 K. Consequently, 12�Ea

�33 in units of kBT, and since an average of three bonds is
broken during a dissolution event simulated using a simple
cubic lattice model �in addition, the most probable dissolu-
tion event is the removal of a three-coordinate site at a kink
at the edge of a terrace�, it is reasonable to use values in the
range of 4�Eb�11 for the “bond-breaking activation en-
ergy.” In most of the simulations described later in this paper,
bond-breaking activation energies toward the lower end of
this range �3�Eb�8� were used. Bond-breaking activation
energies below the range characteristic of the dissolution of
most minerals under natural conditions could be relevant to
dissolution under more chemically aggressive conditions in

the laboratory and the dissolution of some synthetic materi-
als. The bond breaking activation energies are much smaller
than the energies required to break chemical bonds. The rea-
son for this is that dissolution is very different from remov-
ing an atom from a mineral surface in a vacuum. In dissolu-
tion processes, much of the energy required to remove
material from a mineral surface is compensated for by sol-
vation of the dissolved ions.

In a strained solid, the rate of dissolution is enhanced
because the activation energy is reduced, and this is impor-
tant in processes such as pressure solution creep.35–38 It is
intuitively obvious that the strain energy released by removal
of a site from the surface will increase with the site coordi-
nation number n, and, on average, three bonds are broken
each time an occupied site is removed. If it is assumed that
the activation energy is reduced by the strain energy released
by dissolution, then the most simple assumption is that the
activation energy is reduced by n��E /3, where � is the vol-
ume represented by a lattice site and �E is the strain energy
density.22 If these assumptions are accepted, then the rate of
dissolution of a solid site is given by

Rdiss = Ae−n�Eb−��E/3�, �3�

and this equation can be replaced by

Rdiss = Ae−n�Eb−�E/3�, �4�

if the lattice unit a is used as the unit of length �v=a3=1�.
There is no compelling reason to assume that the energy

required to remove a site from an unstrained surface or the
strain energy released by dissolution should be proportional
to the coordination number n. Indeed, the effects of next-
nearest-neighbor interactions �and longer range interactions�
on the change in energy when a site is added to or removed
from a surface in the absence of strain have been included in
many Monte Carlo simulations39,40 and the same approach
could be used in the presence of strain. This work is con-
cerned with non-material-specific generic behavior, and there
is no reason to encumber �and slow down� the simulations
with nonessential details. Additional details such as next-
nearest neighbor interactions, a more complex lattice struc-
ture, and anisotropy will be added when this modeling ap-
proach is used to simulate the behavior observed in
laboratory experiments.

The work described in this paper was focused on irre-
versible dissolution processes, and Eq. �4� is the basis for the
Monte Carlo simulations. The fast kinetic Monte Carlo algo-
rithms described below can be applied to simulations that
include other processes such as growth of the surface and
surface diffusion.

In order to use Eq. �4� in the Monte Carlo simulations,
the bond-breaking activation energy is simply selected as a
parameter in the model, but the energy density field �E�x�
must be calculated. The energy density field associated with
a single defect can be divided into two components: a far-
field component at positions x at which the strain is small
enough for the stress and strain to be linearly related to each
other; and a core component near to the center, or center line,
of the defect. The far field component can then be calculated
using the well-established theory of linear elasticity, but this
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far field component diverges as the center �or center line� of
the defect is approached, and the theory of linear elasticity
breaks down in this core region. The strain energy density in
the core region cannot be obtained from the theory of linear
elasticity, and it is usually estimated either by using an em-
pirical cutoff function that prevents the stress/strain fields
from diverging or by simply truncating the strain energy den-
sity at a threshold value of �E

max �another parameter in the
model�. The radius of the core region depends on the struc-
ture and interatomic interactions in the crystal, and it is typi-
cally 0.5–2.5 times the magnitude of the Burgers vector.41 In
all of the simulations described in this paper, the Burgers
vector b defining the far field displacement was assigned a
magnitude of �b�=1, in lattice units. Whether a cutoff func-
tion or a strain energy threshold was used, the radius of the
core was well within the range of 0.5b�rc�2.5b. If mul-
tiple defects are present, the stress and strain fields can be
calculated by first summing the far field stress and strain
fields associated with the individual defects using the theory
of linear elasticity. The strain energy density can then calcu-
lated from these stress and strain fields, and a variety of
procedures can be used to truncate the strain energy density
in the highly deformed core regions.

If these ideas are accepted, then the main task is to com-
pute the far field strain energy density field using the stan-
dard theory of linear elasticity.

Linear elasticity and elastic energy density

According to the theory of linear elasticity,42 the elastic
energy density is given by

�E =
1

2�
i

�
j

�ij�ij =
1

2
�:� =

1

2
�:C:� , �5�

where � is the second rank strain tensor, � is the second rank
stress tensor, and C is the fourth rank elastic constant tensor.
Equation �5� can be expressed in the form

�E = 1
2�� · �� = 1

2�� · C� · ��, �6�

where �� is a vector containing the 9 elements of �, �� is a
vector containing the 9 elements of �, and C� is a second
rank tensor containing the 81 elements of C. Symmetry con-
siderations allow Eqs. �5� and �6� to be reduced to

�E = 1
2�� · �� = 1

2�� · C� · ��, �7�

where ��= ��11,�22,�33,�12,�13,�23�,
��= ��11,�22,�33,�12,�13,�23�, and C� is a 6�6 second rank
tensor containing elements of C. Here, �ij =2�ij is the “engi-
neering shear strain.”

In the interest of simplicity, attention is confined to iso-
tropic materials with elastic properties that can be defined by
two elastic coefficients. Under these conditions, the tensor
C� has the form

C� = �A 0

0 B
� , �8�

where B is diagonal. In Eq. �8�, A has the form

A = 	C11� C12� C13�

C21� C22� C23�

C31� C32� C33�



= 		 + 2
 	 	

	 	 + 2
 	

	 	 	 + 2




=
Y

�1 + ���1 − 2��	1 − � � �

� 1 − � �

� � 1 − �

 , �9�

where 	 and 
 are the Lame coefficients. In Eq. �9�, Y is
Young’s modulus and � is the Poisson ratio. The matrix B is
diagonal and all diagonal elements of B are equal to the
Lame coefficient 
, which is often given the symbol G, and
referred to as the shear modulus. For an isotropic material,
the shear modulus is related to Young’s modulus Y and the
Poisson ratio � by

G = 
 = Y/�2�1 + ��� . �10�

The general procedure used in this work was to first
calculate the far field part of either the stress field or the
strain field as a sum of contributions generated by all the
defects. This linear superposition of the stress/strain fields is
justified by the linearity of the relationship between stress
and strain in the far field region. In general, expressions for
either the stress field or the strain field �but not always both�
generated by a single defect can easily be found in the sci-
entific literature.43,44 The equation ��=C� ·�� �from Eq. �7��
or the equivalent equation ��=C�−1 ·�� was used to calculate
the complementary field and the strain energy field was then
calculated using Eq. �7�. The strain energy density in the core
regions was then calculated using a constant cutoff �E

max or a
cutoff function, which was applied to the contributions of
individual defects to the stress or strain field.

Point defects

The displacement caused by a point defect in an infinite
linear isotropic body is spherically symmetric and has the
form43

ur =
�v

4r2

r

�r�
, �11�

where �� is the expansion or contraction �negative ��� in-
duced by the point defect and ur is the outward pointing
displacement vector at a distance r= �r� from the point defect.
The corresponding strain is given by

�rr =
�v
r3

and

��� =
�v

2r3 , �12�

where �rr is the radial and ��� is the tangential strain. While
this form for the strain field has manifest spherical symmetry,
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the local point centered spherically symmetric coordinate
system is not convenient for systems with multiple defects.

In Cartesian coordinates, the components of the dis-
placement vector �ux ,uy ,uz� are given by

ux =
�vx

4�x2 + y2 + z2�3/2 , uy =
�vy

4�x2 + y2 + z2�3/2 ,

and

uz =
�vz

4�x2 + y2 + z2�3/2 �13�

so that

�xx =
�v�y2 + z2 − 2x2�

4�x2 + y2 + z2�5/2 ,

�14�

�xy = �yx =
− �v�3xy�

4�x2 + y2 + z2�5/2 ,

and similar expressions can be obtained for the other com-
ponents of the strain tensor. Equations �13� and �14� define
the strain due to a single point defect located at the origin of
a Cartesian coordinate system. They can easily be general-
ized for a point defect at any position, and the principle of
linear superposition can be used to calculate the far field
component of the strain tensor for two or more point defects.
This equation indicates that the stress and strain fields asso-
ciated with a single defect scale as ��r−3 and ��r−3. Con-
sequently, the strain energy density decreases as �E�r−6.
This implies that point defects have only a local effect and
that they can lead to the formation of only shallow pits,
which soon disappear as the dissolution process continues to
lower the surface. Once the strain field has been calculated,
the stress field can be calculated using ��=C� ·�� �from Eq.
�7��, and the strain energy density can then be obtained from
Eq. �5�.

Line defects

In terms of the stress/strain field, the most simple of the
line defects is the screw dislocation, which induces purely
shear deformation given by42,44

�xz�x,y� = �zx�x,y� = −
b

4

x

x2 + y2

and

�yz = �zy =
b

4

y

x2 + y2 �15�

for an infinite dislocation oriented in the z direction �perpen-
dicular to the dissolving surface�. Here, b is the magnitude of
the Burgers vector, which defines the strength and direction
of the dislocation �b= � �b�, where b is the Burgers vector
and the sign of b depends on the sense of the screw�. In this
equation, x and y are the coordinates in a Cartesian coordi-
nate system with the origin on the center of the line defect
and z axis parallel to the direction of the dislocation �the z
axis coincides with the axis of the dislocation�. All the other

components of the strain tensor are zero, and the nonzero
components of the stress tensor are given by

�xz = �zx = −

b

4

x

x2 + y2

and

�yz = �zy =

b

4

y

x2 + y2 �16�

or

�xz = �zx = −

b

2

x

x2 + y2

and

�yz = �zy =

b

2

y

x2 + y2 . �17�

The stress/strain field for an edge dislocation is more
complex—it contains both shear and extension/compression
components in a coordinate system in which the z component
is parallel to the axis of the dislocation. The strain field for
an edge dislocation in which the “extra plane of atoms” lies
in the xz plane, with x�0, is given by43,44

�xx =
− 
b

2�1 − v�
y�3x2 + y2�
�x2 + y2�2 ,

�18�

�yy =

b

2�1 − v�
y�x2 − y2�
�x2 + y2�2 , and �zz = v��xx + �yy�

for the diagonal elements and

�xy = �yx =

b

2�1 − ��
x�x2 − y2�
�x2 + y2�2 or

�19�

�xy = �yx =

b

�1 − ��
x�x2 − y2�
�x2 + y2�2 and �xz = �yz = 0

for the shear components. These equations can also be easily
generalized for defects with different positions and Burgers
vectors. The strain tensor can be obtained from the stress
tensor from ��=C�−1 ·��, where the compliance matrix C�−1

has the form

C�−1 = �A−1 0

0 B−1� . �20�

The matrix A−1 is given by

A−1 =
1

Y 	 1 − � − �

− � 1 − �

− � − � 1



=
1

2
�2
 + 3	�	2	 + 2
 − 	 − 	

− 	 2	 + 2
 − 	

− 	 − 	 2l + 2


 �21�

and B−1 is a diagonal matrix with diagonal elements equal to
2�1+�� /Y =1 /
.
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KINETIC MONTE CARLO SIMULATIONS

In kinetic Monte Carlo simulations the rates of elemen-
tary processes are replaced by probabilities. This method can
be applied to a wide variety of processes including chemical
reactions,45 the kinetics of colloidal aggregation,46 phase
separation,47,48 adsorption and desorption processes,47 diffu-
sive transport,49,50 heterogeneous catalysis,51 and the growth
and dissolution of minerals and other materials.52,53 When
kinetic Monte Carlo simulations are used to simulate micro-
scopic processes, the random selection of discrete events in-
troduces “noise” that plays an essential role in the simulation
and realistically represents the effects of thermally driven
fluctuations.

Here, a kinetic Monte Carlo model is used to simulate
dissolution of a solid body represented by “solid” sites in a
cubic lattice. In a typical Monte Carlo simulation of dissolu-
tion of a solid body with an initially smooth horizontal sur-
face �a surface lying in the xy plane� exposed to a reactive
fluid, all of the sites in a cubic lattice with z coordinates of z0

or smaller are labeled at the start of a simulation to represent
the solid material, and the sites at a height greater than z0 are
given a different label to represent a fluid phase. In a solid-
on-solid models, like those used in this work, dissolution is
represented by removal of only the highest “occupied” �la-
beled as solid� sites in each column of occupied sites. This
allows the cubic lattice to be dispensed with, since the model
system is completely defined by the highest occupied, solid
filled, site in each column of the lattice, and the system can
be represented by the height field h�x ,y�—the height of the
surface of the solid at lateral position �x ,y�, where �x ,y� is a
discrete coordinate system �x=nxa and y=nya, where nx and
ny are integers and a is the length of the side of a unit cell of
the cubic lattice�. Each time the height of a column is re-
duced by unity, to represent a dissolution event, the coordi-
nation number of the site at the top of that column and the
coordination numbers for the sites at the tops of the four
nearest-neighbor columns may change. Consequently it is
necessary to determine if the coordination numbers in these
sites have changed and, if necessary, update the correspond-
ing reaction rates after every dissolution event is executed.
The coordination numbers n for the site at lateral position
�x ,y� can be calculated directly from the height of surface at
�x ,y� and the heights at lateral positions �x+1,y�, �x−1,y�,
�x ,y+1�, and �x ,y−1� using the expression

n = 1 + m�h�x + 1,y� − h�x,y�� + m�h�x − 1,y� − h�x,y��

+ m�h�x,y + 1� − h�x,y�� + m�h�x,y − 1� − h�x,y�� ,

�22�

where m��h�=1 if �h�0 and m��h�=0 if �h�0.
Periodic boundary conditions were used in the lateral

directions �parallel to the initial surface� in all of the simu-
lation of dissolution processes. Consequently, the system can
be thought of as an infinite array of identical domains of size
Lx�Ly, which compactly tile two-dimensional space. This
means that cells at the edge of the computational domain are
treated in exactly the same way as cells in the interior of the
computational domain, even though neighboring cells might
lie in a periodic image of the computational domain. In other

words all coordinates are treated using modular arithmetic
with a modulus of Lx in the x direction and a modulus of Ly

in the y direction.
To calculate the stress/strain fields, full periodic bound-

ary conditions were not used. In simulations in which a
single line defect was located in the center of the computa-
tional domain, only the contribution of this single defect to
the stress/strain fields was calculated �the effects of image
defects in adjacent domains were ignored�. For simulations
with multiple defects, some account of overlapping stress/
strain fields from image cells was required. In molecular
dynamics54–57 and Monte Carlo58–61 simulations of ionic and
dipolar materials, Ewald summation over all the periodic
images62 has been used extensively to calculate long-range
electrostatic interactions. There is a strong analogy between
electric fields generated by charges and stress/strain fields
generated by defects �the defects act as sources for stress and
strain in much the same way that charges act as sources for
electric fields� and Ewald summation or other rapidly con-
vergent methods such as multipole expansions and lattice
summation could be used to calculate the stress/strain fields
in periodic systems containing many defects. However, the
simple approach of including only the contributions from the
defects in the central domain of size Lx�Ly and the eight
neighboring domains in the 3�3 array of domains of size
Lx�Ly nearest to the central domain �the nearest-neighbor
and next-nearest-neighbor domains� was adopted. In all of
the simulations with multiple screw defects, the numbers of
defects with Burgers vectors b of +bz and −bz were equal.
This is equivalent to keeping the number of positive and
negative charges equal to ensure overall charge neutrality.
The large number of screw defects in a domain and the large
scale of the domains both contribute to the relatively small
errors �relative to the stress/strain fields in an equivalent in-
finitely periodic system�. For example, for simulations pre-
sented below involving 100 screw dislocations randomly in-
serted in an area of Lx�Ly =2024�2024, the contribution to
the xz component of the strain field due to the defects in the
16 domains �5�5−3�3� bordering the central 3�3 block
ranged between −1.7�10−5 and 1.5�10−5, and the contri-
bution to the yz component of the strain field ranged between
−1.6�10−5 and 3.2�10−5. Similarly, the contribution from
the next shell of 24 �7�7−5�5� domains surrounding the
central 5�5 block of domains to the xz component of the
strain field in the central domain ranged between −3.4
�10−6 and 3.1�10−6, and the contribution to the yz compo-
nent of the strain field in the central domain ranged between
−3.4�10−6 and 6.1�10−6. This indicates that a simple shell
by shell summation is quite rapidly convergent and that ne-
glect of the domains outside of the central 3�3 block leads
to an error of less than 5�10−5 in the strain field. This
means that the relative error near to the line defects, where
the effects of the stress/strain fields are the most important, is
less than 10−3. To put this into a physical context, for a
material with a compression modulus of 100 GPa, a strain of
5�10−5 would correspond to a pressure of 5 MPa which is
the hydrostatic pressure at a depth of 500 m. At a distance of
rc, the cutoff distance, the magnitude of the strain is O�10−1�.

A similar procedure was used for the simulations of dis-
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solution controlled by multiple edge dislocations. In this
case, equal numbers of edge dislocations with Burgers vec-
tors �x ,y� of �1,0�, �−1,0�, �0,1� and �0,−1� were used.

During each step in the simulation a column in the lattice
�a lateral position �x ,y�� is selected randomly and the height
at that position is reduced by unity �in lattice units� with a
probability

Pi � Ri, �23�

where the dissolution rate Ri is given by Eq. �4�.
Two simple kinetic Monte Carlo algorithms can be used

to simulate dissolution based on these ideas. The first algo-
rithm is closely related to the standard Monte Carlo algo-
rithm for equilibrium systems,63 and it will be referred to as
the “random select and test” algorithm. In this algorithm, a
column of the lattice is selected randomly and the height of
that selected column is reduced by unity with a probability
Ps,i given by Ps,i=Ri /Rmax, where Rmax is the maximum dis-
solution rate for any surface site at the top of a column. This
is implemented by selecting a random number x from a uni-
form distribution over the range �0�x�1� and executing the
randomly selected event if and only if x� Ps,i=Ri /Rmax. If
this approach is used, then the kinetics of dissolution can be
simulated by incrementing the time by an amount �t1 given
by �t1=1 /NSRmax, where NS is the number of columns in the
lattice �the number of active surface sites, Lx�Ly� every
time a column is selected and an “attempt” is made to reduce
the height of that column. If the range of reaction rates is
small, this method can be computationally efficient, but for
many problems its performance is very poor. For a domain
size of Lx�Ly, the computer time tcomp required to reduce
the average height of the surface by a �or unity since a is the
unit of length� scales as tcomp�Lx�Ly �Rr, where Rr is the
ratio between the fastest and the average rate �Rr

=Rmax / �Ri�. This is the inverse of the acceptance ratio �the
fraction of attempted events that are accepted and result in
removal of a site from the surface�. For the cubic lattice
model, in the absence of the effects of strain, the ratio Rr is
given approximately by Rr=e�2Eb�, and for a mineral such as
quartz26 with Eb�10, Rr�5�108. Even for a mineral with a
low dissolution activation energy of Eb�4, Rr�3000. If the
effects of the elastic strain are included, the acceptance ratio
will typically be less than 10−4, even for a small bond-
breaking activation energy �Eb�4�, which makes the model
disastrously slow for this and many other applications.

In the second implementation, which will be referred to
as the “running sum algorithm” a running sum Rs of all of
the dissolution rates is calculated and the site for which
Rs�i−1��xRs�NS��Rs�i� is removed to represent dissolu-
tion, where x is a number selected randomly from a uniform
distribution over the range of 0�x�1 and Rs�NS� is the end
member of the running sum �the sum of all the dissolution
rates�. If this approach is used, then the kinetics of dissolu-
tion can be simulated by incrementing the time by an amount
�t2 given by �t2=1 /Rs�NS� every time a dissolution event is
selected. Although the acceptance ratio is unity for the sec-
ond method, this method is also slow because Lx�Ly float-
ing point operations are needed to reconstruct the running
sum after each step in the simulation, and an average of

0.5Lx�Ly floating point tests are needed to determine which
site should be removed. This means that the computer time
required for a simulation scales as tcomp��Lx�Ly�2. For a
large-scale simulation �Lx�Ly �1000� this approach is im-
practical. For a lattice with Lx�Ly =1024�1024 active sur-
face sites, approximately 6 h of CPU time is required to
lower the average surface height by one lattice unit �remove
106 sites from the lattice� with this algorithm using a single
2.4 GHz Pentium® 4 processor on a Dell workstation.

These primitive methods were used during the early
stages of the investigation, but it soon became evident that it
would not be possible to carry out simulations with the large
lattices required for many dislocations using these ap-
proaches. One important step was to develop a simple
method for randomly selecting a dissolution event in a time
of order log2�Lx�Ly�. This can be accomplished by first de-
termining if xRs�Ns� is larger or smaller than Rs�N0�, where
N0 is the smallest power of 2 larger than Ns /2. If xRs�Ns� is
smaller than Rs�N0� then xRs�Ns� is compared with Rs�N0

− �N0 /2�� and if xRs�Ns� is larger than Rs�N0� then xRs�Ns� is
compared with Rs�N0+ �N0 /2��. If in the next stage, for ex-
ample, it is found that xRs�Ns� is smaller than Rs�N0

+ �N0 /2�� �and larger than Rs�N0��, then xRs�Ns� is compared
with Rs�N0+ �N0 /2�− �N0 /4��. The process is repeated until
the nth stage at which N0 /2n=1. This locates the interval in
the running sum that contains xRs�Ns� within �1, and the
interval which contains xRs�Ns� can then be determined by
comparison with the values of adjacent elements in the run-
ning sum. �The location of the required event in the running
sum is either Nx=N0�N0 /2�N0 /4¯ �1 or Nx+1�. Theo-
retically, this accelerates the selection process by a factor of
approximately Lx�Ly / log2�Lx�Ly��5�104 for Lx=Ly

=1024. However, the problem of recalculating the running
sum remains. This can be addressed by continuing the run-
ning sum as new surface sites are created or the reaction
rates of surface sites change. A linear logical or integer array
whose elements have a 1:1 correspondence with the elements
of the running sum is used to distinguish “dead” events
�events that are no longer possible because of the evolution
of the interface� from “live” events. After an event has been
selected, it is executed only if that event is still “alive.” A
new running sum containing Lx�Ly elements is constructed
if the length of the running sum reaches Nex�Lx�Ly ele-
ments, where Nex is a small number greater than unity, or if
the maximum of the running sum �the value of its end mem-
ber� exceeds Mex times the sum of the rates of the still active
processes, where Mex is another small number greater than
unity. The numbers Nex and Mex should be kept small to keep
the acceptance probability high and to control memory re-
quirements, but larger values reduce the frequency with
which a completely new running sum must be recalculated.
Unfortunately, this approach improved the speed of the simu-
lations by a factor of only about 2. The reason for this poor
performance is that the rates of most dissolution events that
actually take place are much larger than the average dissolu-
tion rate. Consequently, the large elements in the running
sum die quickly, and the acceptance ratio also declines
quickly as the probability of selecting a dead event increases.
This problem can be substantially alleviated by using two
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running sums—one for the fast events and one or the slow
events. The short running sum for the fast events is refreshed
frequently and the long running sum for the less frequent
events is refreshed less frequently. This algorithm will be
referred to as the “extended running sum” algorithm. In the
absence of defects, the dominant dissolution event is the re-
moval of a three coordinate kink site at a terrace edge if the
bond-breaking activation energy is more than a few times
kBT. From Eq. �2�, the rate of this event is Rtypical=Ae−�3Eb�.
In simulations of the formation of shallow etch pits in which
dissolution events larger than 0.5Rtypical were considered to
be fast events, the times required to reduce the height of the
surface by one lattice unit from a system with Lx�Ly

=1024�1024 were about 12 s for a bond-breaking activa-
tion energy of Eb=10 and about 10 s for Eb=5. In these
simulations Nex and Mex were both assigned values of 2. No
systematic attempt was made to vary the values of Nex and
Mex or the threshold between fast and slow events, and it is
possible that the performance of this algorithm could be im-
proved by a better selection of these parameters. On the other
hand, the optimal values for these quantities will vary with
model parameters, and our objective was to develop algo-
rithms fast enough to achieve our research objectives rather
than to achieve the best possible performance in each simu-
lation. To implement this algorithm, it is necessary to keep
track separately of the possible fast and slow events as the
dissolving surface evolves. For typical parameters �Eb and
the parameters associated with the strain energy density�, this
is about 2000 times faster than the best of the primitive al-
gorithms �the running sum algorithm� described above for
systems of size Lx�Ly =1024�1024.

Another approach, which will be referred to as the “di-
vide and conquer” algorithm, was developed after the simu-
lations with point defects were completed. This algorithm is
based on the idea of classifying dissolution events according
to their rates and treating the events in each class separately
using the random select and test approach. This method is
efficient because the range of rates in every class is small.
The rates are divided into Nb equal intervals �rate classes� on
a logarithmic scale ranging from the minimum rate to the
maximum rate. An event is selected randomly by first ran-
domly selecting one of the classes, with probabilities propor-
tional to NcRc

M, where Nc is the number of members in a
class and Rc

M is the maximum rate for members of the se-
lected class. Once the class has been selected a member of
the class is selected randomly and the selected member is
accepted if a random number x uniformly distributed over
the range 0�x�1 is smaller than R /Rc

M, where R is the rate
of the selected class member �the selected process�. The
probability that a particular even with a rate R will be se-
lected is given by the product of the class selection probabil-
ity �NcRc

M /�c�Nc�Rc�
M�, the probability that the event will be

accepted within its class �1 /NC�, and the acceptance prob-
ability �R /Rc

M�. This indicates that the event selection prob-
ability is

R/Rc
M � 1/NC � NcRc

M��
c�

Nc�Rc�
M = R��

c�

Nc�Rc�
M

�24�

and that the time should be incremented by 1 /�c�Nc�Rc�
M ev-

ery time an attempt is made to execute an event. It is essen-
tial that the probability of selecting an event is proportional
to its rate, and Eq. �24� shows that this condition is satisfied.
To maintain a high acceptance rate the ratio Rc

M /Rc
m must be

kept small, where Rc
m is the minimum rate in the class

�Rc
M /Rc

m has the same value for all classes�. Suitable values
for Rc

M /Rc
m lie in the range of 2.0–4.0. For Eb=10.0 and a

maximum strain energy of 7.5, this implies that the number
of classes should lie in the range of 50 / ln�4��Nc

� �50� / ln�2� or 18�Nc�36. This is an exceptionally large
range of rates �a ratio of almost 1022 between the fastest and
slowest rates�. For more typical parameters, the range of
rates is smaller, and about 20 classes is sufficient �this would
allow a ratio greater than 1012 between the fastest and slow-
est rates for Rc

M /Rc
m=4�. It is desirable to keep Nc small

because a new running sum of the class selection probabili-
ties NcRc

M must be calculated during each step in the simu-
lation. In practice, the speed of the simulation is not very
sensitive to Nc because other parts of the simulation �prima-
rily calculating the rates for the new events that are possible
when the surface changes, determining which class the new
events belong to and book keeping�, require more time. An
important advantage of the divide and conquer method over
the extended running sum method is that only one quantity
�Nc� affecting the performance must be selected while three
quantities �Nex ,Mex, and the threshold between the fast and
slow events� must be selected if the extended running sum
method is used. Also, the performance of the divide and
conquer method is not very sensitive to Nc. The overall per-
formance of the divide and conquer algorithm is somewhat
better that that of the extended running sum method, and the
time required to reduce the height of the surface by one
lattice unit for a system with Lx�Ly =1024�1024 was
4.0–4.5 s. The speedups relative to the most simple running
sum method for different system sizes were 3.5 �32�32�, 11
�64�64�, 44 �128�128�, 185 �256�256�, 880 �512
�512�, 4175 �1024�1024�, �15 000 �estimate� �2048
�2048�, �50 000 �estimate� �4096�4096� for a test case
with ten screw dislocations and a bond-breaking activation
energy of 4.0. Further improvements might be possible, but
more complex schemes require more book keeping over-
head. Substantial improvements in one part of the code do
not necessarily lead to substantial improvements in overall
performance. The simple strategy of keeping track of which
class of events is executed more frequently and then deter-
mining whether or not this class would be selected before
executing a fast comparison between a random number and
the running sum of class selection probabilities increased
cpu time, despite the fact that in typical simulations most
events do belong to only one class.

The divide and conquer approach is particularly efficient
when there is a small number of discrete rates. In this event,
the rate classes have a 1:1 correspondence with the discrete
rates and the acceptance ratio is unity for each rate class. In
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addition, if the number of distinct rates is small, then the
running sum is short and both the reconstruction of the run-
ning sum and the random selection of a rate class �weighted
by the sum of the rates of the events in each class� are cor-
respondingly fast. However, simulations carried out using the
divide and conquer algorithm are only about two times
slower than simulations carried out using the simplified
model in which the effects of the stress/strain field is ignored
and there is only a small number �five for a cubic lattice� of
discrete rates. This model has an acceptance ratio of unity,
and there is no need to construct a running sum. The speed of
the simplified model provides an upper limit for the speed of
simulations carried out using the divide and conquer model.
This indicates that the potential for further improvements in
the divide and conquer algorithm is relatively small. A sig-
nificant disadvantage of the divide and conquer algorithm is
the amount of memory that it requires. In its present form
this limits effective use of the algorithm to surfaces of about
�2048�2048� or smaller for a typical single processor work-
station. The memory requirements could be reduced, but
only at the cost of increased book keeping overhead. The
extended running sum method used less memory, and we
have performed simulations on systems of size �4096
�4096� using this method.

Maksym64 developed a kinetic Monte Carlo model for
molecular beam epitaxy, which is based on dividing the
Ntot=Lx�Ly events into Ng groups, each containing g
=Ntot /Ng events. The algorithm consists of first selecting a
group and then selecting a specific event within the chosen
group. The optimum value of Ng is approximately Ntot

1/2 and
this leads to an acceleration by a factor of O�Ntot

1/2�. We
were unaware of the work of Maksym when the methods
described above were developed, and we have not imple-
mented this method to evaluate its efficiency. However, the
accelerations obtained from the divide and conquer and ex-
tended running sum methods described above are greater
than Ntot

1/2, and they are almost certainly more efficient than
Maksym’s method.

Point defects

If a material is subjected to elongational deformation,
the strain energy is given by

E� = �2YV/2, �25�

where � is the elongational strain, E� is the strain energy in
Newton meters �or Joules�, Y is Young’s modulus in pascals,
and V is the volume of strained material in cubic meters. In
the Monte Carlo simulations kBT is the unit of energy and the
length a of the unit cell in the cubic lattice is the unit of
length. The strain energy is given by

E�m = �2YmVm/2, �26�

where E�m is the strain energy in units of kBT, Ym is Young’s
modulus in computer model units �defined by Eq. �25��, Vm

is the volume of the strained material in units of a3, and a is
the length of a lattice unit �the distance between the centers
of two nearest neighbor cells in the lattice�. To make the
energies in Eqs. �25� and �26�, measured using the same

units, equal for equal volumes of material subjected to the
same strain, E�m and E� must be related by

E�m = E�/1.380 65 � 10−23, �27�

where 1.380 65�10−23 is the Boltzmann constant in units of
J K−1. This implies that

YmVm = YV/1.380 65 � 10−23, �28�

and Young’s modulus Ym used in the computer model must
be related to Young’s modulus in pascals YPa by

Ym =
YPa � �3

1.380 65 � 10−23 � T
=

YPa � v
1.380 65 � 107 � T

=
YGPa � v

3.865
, �29�

where � is the length in meters corresponding to one side of
a unit cell, v is the volume represented by a unit cell in the
cubic lattice in units of Å3, and YGPa is Young’s modulus in
gigapascals. A temperature of 280 K has been assumed in the
expression on the right hand side. Furthermore, if Young’s
modulus of 87 GPa and a unit volume of 37.6 Å3 �the aver-
age Young’s modulus and the volume of a SiO2 unit in
quartz� are assumed, then the above equation indicates that a
value of about 850 should be used for Young’s modulus Ym

in the kinetic Monte Carlo model. This value for Ym and a
Poisson ratio of �=0.3 were used in almost all of the simu-
lations presented here. In real inorganic crystals, Young’s
modulus covers a quite wide of values; it has a value of
about 5.3 GPa for cesium iodide and almost 1200 GPa for
diamond.

If the magnitude of the expansion ���� �the strength of
the point dislocation� is assumed to be 0.5�, and it is as-
sumed that the theory of linear elasticity can be applied only
for strains smaller than 0.1, then Eq. �11� implies that the
radius of the disordered core region is only slightly larger
than a. Figure 1�a� shows results from a simulation carried
out using the parameters Ym=850, ��=0.5, Eb=10.0, a core
radius of rc=1.2 �in units of a�, and a Poisson ratio of �
=0.3. Figure 1�b� is for the same conditions except with Eb

=4.0. The point defects were inserted randomly with a mini-
mum separation of 10 lattice units. With these parameters,
the maximum strain energy, in the core, is about 10 �in units

FIG. 1. Results of a simulation of dissolution with a point defect density of
6�10−6. On the left-hand side �a�, the bond-breaking activation energy is
10, while on the right-hand side �b�, the bond-breaking activation energy is
4. The gray scale indicates the height of the surface �a darker shade indicates
a lower height�, which is shown after an average of 20 layers have been
removed. A similar gray scale is used to indicate the surface height in all of
the simulations. The surface area is Lx�Ly =1024�1024.
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of kBT�. This implies that once the core is exposed, the core
sites will dissolve e10�2�104 times faster than sites in an
unstrained part of the surface. A defect density of 6�10−6

�in units of a−2, where a is the length of a cell in the simu-
lation lattice� was used to obtain the results in Fig. 1. At this
low defect density, more pits are initiated spontaneously than
by exposure of point defects. However, the spontaneously
initiated pits have a depth of only one lattice unit, while the
pits initiated by exposed point defects are several lattice units
deep.

In the simulations shown in Fig. 1, the strain energy
density �E�x� was calculated at the centers of all of the cells
in a three-dimensional lattice, and the regions occupied by
solid and fluid were represented by “labeling” a three-
dimensional lattice. Because of the short range of the stress/
strain field associated with each defect and the restriction on
the distance between neighboring defects, the strain energy
density �E�r�, where r is the distance from the defect, can be
calculated for each defect and the contribution of each defect
can be added ��E

T�x�=�i=1
i=Nd�E��x−xi��, where i is the position

of the ith point defect, �E
T�x� is the total strain energy density

at position x, and Nd is the total number of point defects�.
These procedures are very much different from those used
for line defects, and they cannot be used for line defects. To
account for the behavior in the core region, the relationship
between strain energy density and the distance from the cen-
ter of the defect was changed from �E�r−6 to �E��r2

+rc
2�−3 or �E�r−6fc�r�, where fC�r�=r6 / �rc

2+r2�3. The cutoff
function fC�r� has the forms fC�r�→1 for r�rc and fC�r�
→r6 /rc

6 for r�rc. This removes the singularity in the strain
energy density calculated using the theory of linear elasticity.
Without guidance from more detailed simulations, the form
of the cutoff function is arbitrary, providing it satisfies
fC�r�→1 for r�rc and fC�r�→r6 /Const. for r�rc. Because
of the short range of the stress/strain field surrounding a
point defect, the primary effect of the point defects on the
dissolution process is to initiate shallow pits. This observa-
tion motivated the development of a simplified “no strain/
empty core” model in which the effect of the point defects is
represented by removing a small cluster of sites from the
surface when a point defect is encountered and the effects of
the strain associated with the point defects are ignored. Fig-
ure 2 shows the results of simulations carried out using this
model. A pit nucleus consisting of 15 sites �a pattern consist-
ing of a site and its four nearest neighbors in the �x ,y� plane
repeated at three adjacent heights� representing the highly
deformed core of a point defect, together with any occupied
sites above the pit nucleus, was removed whenever the core
of a point defect was uncovered. Figure 2�a� shows a simu-
lation carried out using this simplified model with a bond-
breaking activation energy of 10, and Fig. 2�b� shows a
simulation carried out with a bond-breaking activation en-
ergy of 4. Since the strain energy is neglected in this model,
there are only five distinguishable dissolution rates, corre-
sponding to one to five bonds connecting any particular sur-
face site to the bulk solid. This makes it possible to develop
a very efficient model at the cost of some book keeping and
overhead by keeping track separately of the surface sites
with different coordination numbers. In each step of the

simulation the coordination number n of the site to be re-
moved is first selected, based on the product of the number
of sites of each coordination number and their dissolution
rates �the total dissolution rate for solid sites with coordina-
tion number n�, and then a specific site with that coordination
number is randomly selected and removed. Using this model,
Lx�Ly =1024�1024 sites can be removed in O�1� s.

A comparison of Figs. 1 and 2 show that the simplified
no strain/empty core model gives results that are very similar
to those obtained from the more complete model. For each
model, there are substantial differences between different re-
alizations obtained by using a different set of random num-
bers. It could be argued that the simplified model cannot be
used to address issues such as the dependence of the pit
depth on the defect strength ��. On the other hand, the ef-
fects of point defects are dominated by the poorly understood
core region, and, in most cases, it is not possible to reliably
estimate the cutoff radius or the form of the cutoff function.
Molecular dynamics simulations could be helpful, but accu-
rate particle-particle or multiparticle interaction potentials
are often not available for important minerals.

Simulations were also carried out using models that were
based on the idea that the stress/strain fields are relaxed as
soon as the dissolving surface reaches the center of the point
defect �vacancy, interstitial, or impurity�. Although the sur-
face morphology is changed somewhat by this relaxation
process, the essential nature of the dissolution process re-
mains the same—point defects initiate shallow pits which
grow laterally and merge in combination with pits that are
spontaneously initiated. The simplified, no strain/empty core,
version of this model is the same as the simplified no strain/
empty core model without relaxation, except for a smaller
effective core volume. The amplitude of the surface rough-
ness generated in this manner is just a few lattice units �like
the surfaces shown in Figs. 1 and 2�.

Screw dislocations

Simulations based on Eqs. �8�, �9�, and �19�–�21� were
carried out to investigate the influence of screw dislocations
on dissolution. Figure 3 shows how the nature of single pits

(a) (b)

FIG. 2. Results from a simulation carried out using the simplified no strain/
empty core model for dissolution of a solid containing point defects. The
point defect density is 6�10−6. On the left-hand side �a�, the bond-breaking
activation energy is 10, while on the right-hand side �b�, the bond-breaking
activation energy is 4. The volume of the defect core, which dissolves in-
stantaneously on exposure, was 15 �in units of �=a3�. The gray scale indi-
cated the height of the surface, which is shown after an average of 20 layers
have been removed. The surface area is Lx�Ly =1024�1024.
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generated with Young’s modulus of Ym=850, a Poisson ra-
tion of �=0.3 �a shear modulus of Gm=327�, a Burgers vec-
tor with magnitude b=1, and a cutoff length of rc=1.2 de-
pends on the bond-breaking activation energy Eb. In these
and other simulations with screw dislocations and edge dis-
location, it was assumed that the dislocations are oriented
perpendicular to the plane of the dissolving surface. The sin-
gularities in the stress/strain fields were removed by replac-
ing x2+y2=r2 in the denominator in Eqs. �19�–�21� by �r4

+rc
2r2�1/2. For an isolated defect this changes the strain en-

ergy density from �E�r−2 to �E�1 / �rc
2+r2� so that the cut-

off function is fC=r2 / �r2+rc
2�. Again, the form of this cutoff

function is arbitrary, providing that the cutoff function fC�r�
decreases monotonically with decreasing r, with fC�r�→1
for r�rc and fC�r�→r6 /Const. for r�rc. If more than one
line defect is present, the effect of the cutoff procedure is
more complex.

If the bond-breaking activation energy is large enough,
the overall lowering of the surface due to spontaneous nucle-
ation and growth of shallow pits is faster than the recession
of the surface due to the strain energy associated with the
dislocation, and pits do not develop. Although dissolution is
a kinetic process, this behavior is related to the thermody-
namics of hollow core formation. The bond-breaking activa-
tion energy is related to the surface tension �a large bond-
breaking activation energy implies a large surface tension�,
and the thermodynamic theory of Frank21 and Cabrera et
al.20 predicts that the hollow core radius decreases with in-
creasing surface tension.

For a bond-breaking activation energy of Eb=6.5, a rela-
tively shallow pit with sides that have a very small slope
�Fig. 3�a�� develops. In this simulation, many small very
shallow pits that spontaneously formed within the larger pit
nucleated by the screw dislocation can be seen. As the bond-
breaking activation energy decreases �Figs. 3�b� and 3�c�� the
slope of the pit walls increases. Under these conditions �Eb

=5.0 and Eb=3.5� the influence of the dislocation stress/
strain energy is small, except in the immediate vicinity of the
dislocation, and the walls of the pits are essentially inclined
planes. At sufficiently small bond-breaking activation energy
�Eb=2.0, Fig. 3�d��, the center of the pit deepens rapidly, and
the pit develops a characteristic flared shape near its center.
In real crystals, the bond-breaking activation energy will be
correlated with the modulus, and it may not be realistic to
vary the bond-breaking activation energy over a wide range
with a fixed shear modulus. However, the ratio between the
bond-breaking activation energy and the shear modulus is
not fixed, and the geometry of real etch pits can be expected
to depend on the ratio between these parameters. The ratio
between the bond-breaking activation energy Eb and the
strain energy, Yb2a3 /rc

2, where b, a, and rc are in physical
units, or Ymb2 /rc

2, where b ,a=1, and rc are in model units, is
an important dimensionless ratio.

Figure 4 shows some of the results obtained from a
simulation in which 100 screw dislocations were placed ran-
domly in a surface with an area of Lx�Ly =2048�2048. In
a physical system, this would correspond to a dislocation
density of O�108� cm−2, which is within the range found in
real materials �106–1011 cm−2�. The stress and strain fields at

(a)(a)(a)(a)

(c) (d)

(b)

FIG. 3. Isolated pits centered on screw dislocations. The pits were generated
with a shear modulus of Gm=370, a Burgers vector with a magnitude of
unity and bond-breaking activation energies of Eb=6.5, 5.0, 3.5, and 3.0 in
�a�, �b�, �c�, and �d�. The simulations were carried out using lattices of Lx

�Ly =1024�1024 sites, and the average height was reduced by 50, 50, 500,
and 500. The simulations were stopped when the pit growth �approximately�
reached the edges of the lattice, and the pit depths �the difference between
the maximum and minimum heights shown in the 1024�1024 areas� at this
stage were 6, 55, 524, and 1171. The apparently darker gray shade along the
diagonal corners in �b�–�d� is an optical illusion, and this can be confirmed
by covering three of the four quadrants with white paper.

FIG. 4. Four stages in a simulation of dissolution of a 2048�2048 surface
with 100 randomly distributed dislocations. This simulation was performed
using Young’s modulus of Y =850, a Poisson ratio of �=0.3, a Burgers
vector with a value of unity, b=1, and a bond-breaking activation energy of
Eb=3.0�. A sharp cutoff in the total strain energy density corresponding to a
cutoff distance of rc=1.5 for an isolated screw dislocation was used. �a�–�d�
show the surface after the average height of the surface has been reduced by
40, 320, 1280, and 5120.
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every site on the lattice were calculated using the theory of
linear elasticity and then reducing any strain energy densities
that exceeds �E

max=Gmb2 /rc
282 to �E

max. This is consistent
with the idea that the structure in the highly deformed core
region is liquidlike65 and that the largest strain energy den-
sity corresponds to this liquidlike structure. Several other
models for the cutoff on the strain energy density were in-
vestigated. If the stress and strain fields associated with the
screw dislocations are calculated with the cutoff function
used for the single dislocation simulations illustrated in Fig.
3 and these stress/strain field are summed and then used to
calculate the strain energy density, the pits associated with
the near coincidence of two or more dislocations completely
dominate the pitting pattern on the time scale of the simula-
tions. This occurs because the strain energy density near two,
or more, adjacent dislocations exceeds the maximum strain
energy density for a more isolated dislocation, and this re-
sults in very rapid pit growth. The appealing concept of a
liquidlike core suggests that a maximum strain energy den-
sity cutoff is more realistic than the additive superposition of
the stress and strain fields associated with each of the dislo-
cations, with the same cutoff function for the stress/strain
fields associated with each of the dislocations. However, de-
tailed atomistic simulations for specific materials, beyond the
scope of this investigation, would be required to resolve this
issue.

The main effect of the near coincidence of two or more
dislocations is that the pit width deep inside the “coalesced”
pit is much greater than the width at a similar level in pits
centered on single defects. It is not possible to conclude from
the results shown in Fig. 4 what the asymptotic �long time�
behavior will be. Although the differences between Figs. 4�c�
and 4�d� are small, it is clear that a stationary surface mor-
phology has not been reached, and very much larger scale
�larger time� simulations would be required to resolve this
issue. However, this is much more of a theoretical issue re-
lated to the behavior of the model than a practical issue re-
lated to the dissolution of real minerals. An array of infinitely
long screw defects, all oriented perpendicular to the plane of
the dissolving surface, cannot be generated, and it is cer-
tainly not characteristic of real minerals produced under
natural conditions. Very often dislocations form loops with
characteristic length of O�1� 
m and complex structures
spanning a wide range of submicron and supramicron length
scales,66–69 and a height reduction, −��h, of 5120 in our
simulations corresponds to the dissolution of O�1� 
m of
material from the surface.

To further investigate the factors that control the evolu-
tion of the surface morphology, simulations were carried out
using a symmetric array of 8�8 dislocations in a surface of
2048�2048 sites. The signs of the Burgers vectors were
arranged in a checkerboard fashion �positive on “black”
squares and negative on “white” squares�, and for each site
on the lattice the contributions to the stress/strain fields were
calculated from the dislocations lying in a 4096�4096
block, in the periodically continued array of domains, cen-
tered on that site. This ensures that each dislocation is in the
same environment �stress field and strain field�. Figure 5 in-
dicates how the surface evolves under these conditions for

bond-breaking activation energies of Eb=3.0, 5.0, 6.0, and
7.0. For the higher bond-breaking activation energies �Figs.
5�a� and 5�b��, the pitting pattern was very dynamic. New
pits appeared after only a small number of additional layers
were removed and old pits disappeared. The total range of
surface heights remained fairly constant—just a few height
units �lattice units a� for Eb=7.0 and a range of 10–15 for
Eb=6.0. Based on these observations, it appears likely that
Figs. 5�a� and 5�b� are representative of the asymptotic �long
time limit� behavior of the system. However, surface features
in parts �a� and �b� are comparable with the system size, and
larger scale simulations run for much longer times would be
needed to evaluate this idea. Such simulations are possible,
but they are not convenient on a workstation. When the ac-
tivation energy is reduced to 5.0 �Fig. 5�c�� the pits grow
deeper, and the surface is less dynamic. The pits become
deeper as the bond-breaking activation energy decreases, and
more material must be removed to erase a deeper pit. In
addition, the pit cores deepen at a rate which is greater than
the average rate at which the surface recedes due to dissolu-
tion, and this “stabilizes” the pits. The pattern shown in Fig.
5�c� appears to be stable under growth. However, the pattern
does include features with sizes comparable to the overall
system size, and if a simulation with the same parameters
was carried out using a surface size greater than 2048
�2048, then these features might have been larger. This
trend continues when the bond-breaking activation energy is
reduced to Eb=3.0 �Fig. 5�d��. However, the pitting pattern is
very much different in Fig. 5�d�. Even after the average
height has been reduced by �h�5120 the pattern retains the

FIG. 5. Pitted surfaces obtained using a symmetric 8�8 array of screw
dislocations. The stress/strain fields were calculated using the parameters
Y =850, �=0.3, and b=1, with a sharp cutoff in the total strain energy
density corresponding to a cutoff distance of rc=1.5 for an isolated screw
dislocation. �a� shows a simulation with a bond-breaking activation energy
of Eb=7.0 after the average surface height had been reduced by ��h=320.
For �b�–�d� Eb=6.0, ��h=320; Eb=5.0, ��h=640, and Eb=3.0, ��h
=5120.
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full symmetry of the dislocation array on the scale and res-
olution used in this figure. It seems likely that this pattern is
stable. It is evident from Fig. 5 that random microscopic
fluctuations play an important role in the evolution of pitting
patterns. The random fluctuations break the initial symmetry
and the cumulative effects of the fluctuations are evidently
quite large. It appears that the dissolution process amplifies
the effects of the fluctuations for intermediate bond-breaking
activation energies. One possible mechanism for this is that
the random fluctuations �the random selection of “solid” sites
for conversion to “liquid” sites in the model, with probabili-
ties proportional to their dissolution rates� randomly deepen
the pits by dissolution near their cores, and the amount of
material dissolved is amplified by lateral dissolution.

To evaluate the effects of the finite system size on the
simulation shown in Fig. 5�b�, a similar simulation with the
same dislocation density �a regular 16�16 array of disloca-
tions� was performed on a system with a surface area of
4096�4096. The results of this simulation are shown in Fig.
6. While parts of Fig. 6 are similar to Fig. 5�b�, it is clear that
Fig. 6 also contained features that are of comparable scale to
the overall scale of the system. This implies that still larger
scale simulations may be required to completely overcome
finite system size effects in this particular case.

Figure 7 shows some results from simulations carried
out to investigate the effects of screw defect density on the
morphology of dissolving surfaces. Simulations were carried
out with Young’s modulus of 1700 �twice the Young’s modu-
lus used in all of the other simulations� and a high bond-
breaking activation energy �Eb=12.0�. The structure of the
surface is shown after the mean surface height had been re-
duced by 500. In some cases, the surface structure after the

average height had been reduced by 100 was quite similar to
the structure after the average surface height had been re-
duced by 500, but in other cases the two surfaces were quite
different. Perhaps the most remarkable aspect of Fig. 7 is the
similarity of the surfaces, irrespective of the number of un-
derlying dislocations. In this case, it appears that the rate of
overall lowering of the surface height and the rate of pit
deepening at and near dislocation cores at the bottom of shal-
low pits are almost equal. Under the conditions of these
simulations �a large bond-breaking activation energy� the
rate of retreat of step edges is very fast compared with the
rate at which new pits nucleate and deepen. The dominant
surface lowering process is step flow and deep pits do not
develop because the rate of surface retreat due to step flow
dissolution keeps up with the rate of pit deepening. The
simulation results suggest that random fluctuations can lead
to the nucleation of a new pit, and if the new pit continues to

FIG. 6. A dissolving surface generated by a simulation similar to that used
to generate Fig. 5�b�, but with a surface of area of 4096�4096 instead of
2048�2048. The line defect density �1.53�10−5� was the same in both
simulations, and all other model parameters were also the same. Because
Figs. 5�b� and 6 are displayed on the same scale, they can be directly
compared.

FIG. 7. Etch-pit patterns from simulations carried out with a variable num-
ber of screw dislocations with Burgers vectors of magnitude b=1.0. Young’s
modulus of Ym=1700 and a Poisson ration of �=0.3 were used in this
simulation. A sharp strain energy density cutoff corresponding to the single
dislocation strain energy density at a radius of 1.1 was used, and the bond-
breaking activation energy was Eb=12.0. In all cases, the etch-pit pattern is
shown after the average surface height was reduced by 500. �a� shows the
surface obtained with two �well separated� dislocations, but the surface con-
tains only one pit. �b�, �c�, �d�, �e�, and �f� show the surface morphologies
generated using 8, 32, 128, 512, and 2048 screw dislocations.
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be favored by random fluctuations, it may deepen faster than
the more established pit, which becomes shallower and even-
tually disappears as the average surface height decreases.

EDGE DISLOCATIONS

Since the stress and strain fields associated with edge
dislocations are not invariant to rotation about the axis of the
defect, they have a more complex form. All of the simula-
tions were carried out by first adding the stress and strain
fields generated by individual dislocations, then calculating
the strain energy density from these summed stress and strain
fields, and finally reducing the strain energy densities that
exceeded a threshold value to the threshold value �E

max. The
strain energy densities at the cutoff radii, corresponding to a
strain of �0.1, were similar to those used in the point defect
and screw dislocation accelerated dissolution simulations.
The idea that the material in the core of a dislocation has a
liquidlike structure, with a maximum strain energy approxi-
mately equal to the latent heat of fusion, suggests that the
maximum strain energy density is of the order of a few kBT,
and this is consistent with cutoff strains of �0.1.

Figure 8 shows results from simulations of the dissolu-
tion of single pits carried out using Young’s modulus of Ym

=850, a Poisson ratio of �=0.3 �a shear modulus modulus of
Gm=327�, a Burgers vector with magnitude b=1, and a cut-
off of �E

max=3.5 for the strain energy. For the most part, etch
pits simulated with the strain energy density field of an edge
dislocation are very similar to etch pits simulated with the
strain energy density field of a screw dislocation, and this is
indicated by the similarities between Figs. 3 and 8. It is
possible to form a pit at a higher bond-breaking activation
energy for the screw dislocation �compare Figs. 3�a� and
8�a�� because the strain energy is larger for an edge disloca-
tion �with the same Young’s modulus, Poisson ratio, and Bur-
gers vector magnitude� and the cutoff energy density of
�E

max=3.5 used in the simulations that generated Fig. 8 is
larger than the maximum strain energy density at the center
of the screw dislocations used in the simulations illustrated
in Fig. 3. The large pit shown in Fig. 8�a� lacks the small
secondary pits seen in Fig. 3�a�. However, this is expected

since the large bond-breaking activation energy used to gen-
erate Fig. 8�a� makes it more difficult to spontaneously
nucleate secondary pits, and the smaller terrace widths in the
pit shown in Fig. 8�a� also make secondary pit formation less
likely.

Figures 9 and 10 show some of the results from simula-
tions of the growth of multiple pits controlled by edge dis-
locations. In both of these simulations the same random dis-
tribution of dislocation positions was used. Not surprisingly,
the behavior of simulations with multiple edge dislocations
parallels that of simulations with multiple screw dislocations.
Figure 9 �Eb=7.0� and similar figures, not shown for Eb

=5.0 and Eb=6.0, show that for relatively large bond-
breaking activation energies, a single pit eventually domi-
nates the entire dissolving surface. For smaller bond-
breaking activation energies �Eb=3.0, Fig. 10�, the surface
morphology evolves in a much different way, and it may
approach an essentially constant asymptotic �large time�
form. The surfaces after the average surface height has been
reduced by 5120 �not shown� and 10 240 �Fig. 10� are quite
similar. However, the core regions continue to deepen faster
than those regions of the surface that are located further from
the dislocations, and the simulation results are equally con-
sistent with the idea that the surface will continue to evolve
until a single pit dominates the surface. The accumulation of
the random fluctuations inherent in both the kinetic Monte
Carlo simulations and natural dissolution processes may lead

(a) (b)

FIG. 8. Simulation of the growth of a single pit controlled by an edge
dislocation. Young’s modulus of 850, a Poisson ratio of �=0.3, a Burgers
vector of magnitude b=1, and a strain energy density cutoff length of
�E

max=3.5 were used in these simulations. In �a�, a bond-breaking activation
energy of Eb=8.0 was used and in �b�, the bond-breaking activation energy
was Eb=4.0. Both parts show pits formed after an average surface height has
been reduced by 250. In an infinite mineral surface, the pit shown would
have grown far beyond the 1024�1024 area shown here.

FIG. 9. Simulation of multiple etch-pit growth controlled by 100 randomly
placed edge dislocations intersecting a 2024�2024 surface. Young’s modu-
lus of Y =850, a Poisson ration of �=0.3, and a strain energy cutoff of 3.0
were used in the simulation. The magnitude of Burger’s vector was �b�
=1.0, and equal numbers of edge dislocations with Burgers vectors of +x,
−x, +y, and −y were used. The bond-breaking activation energy was set to
Eb=7.0. �a�, �b�, �c�, and �d� show the surface height field after the average
height was reduced by 10, 20, 40, and 80. Several small, shallow pits, are
located inside the large pits in �d� �below the level of the gray scale cutoff�.
Propagating step waves can be seen in several of the figures; they are par-
ticularly clear in �d�.
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to a different asymptotic �long time� behavior. However, this
limit will have no relevance to real line defect-mediated dis-
solution processes. As already mentioned, line defects are
curved, they can form loops that are closed or terminate at
free surfaces, and they form complex tangles.66–69 These de-
viations from a model in which all the line dislocations are
assumed to be straight and oriented perpendicular to the dis-
solving surface will have much more important conse-
quences than the way in which the effects of random fluc-
tuations accumulate over time.

Simplified models for line defect controlled pit
growth

Under some circumstances, the effect of a line defect on
etch-pit formation is dominated by the rapid dissolution of
the core of the dislocation and the effect of the stress/strain
field is secondary. Based on this idea, several simple models
were developed. In the no strain/empty core model the core
of the dislocation was removed at the start of the simulation,
and the effects of the stress/strain field were ignored. Figure
11 shows examples of etch pits simulated using this model.
In parts �a� and �b�, the height of the surface was reduced to
zero in a single site containing the lateral coordinates of the
line defect, and in parts �c� and �d� the height of the surface
was reduced to zero in a 3�3 block of sites at the start of the
simulations. The initial height of the surface was set to a
value that was large enough to ensure that surface heights of
regions outside of the empty cores remained positive. The

motivation for this was not to take advantage of the greater
speed of this simplified algorithm �it is only about twice as
fast as the models described above that do include the effects
of the stress/strain field� but, rather, to obtain a better under-
standing of the growth of multiple etch pits by eliminating
the effects of the far field part of the stress/strain field. The
etch pits shown in Fig. 11 are similar to those obtained using
models that do include the effects of the far-field component
of the stress/strain field for the same bond-breaking activa-
tion energies, and this can be seen by comparing Figs. 3, 8,
and 11. In particular, the slopes of the pit surfaces increase
with decreasing bond-breaking activation energy. The most
significant differences are near the pit centers, where the
stress/strain field is the largest. A comparison of Figs. 11�a�
and 11�c� shows that for large bond-breaking activation en-
ergies, the pit is deeper after the average surface height has
been reduced by 250 when the size of the empty core is
larger. This behavior can be anticipated because sites can be
removed more rapidly from the larger perimeter of the larger
hollow core used in the simulation shown in Fig. 11�c�. Simi-
larly, the pit shown in Fig. 11�b� has a depth of 75, while the
pit in Fig. 11�d� has a depth of 200. The ratio between the pit
depths �2.66� is approximately the same as the ratio between
the number of more reactive four-coordinate sites along the
perimeters of the empty cores �3.0�. Similar simulations were
also carried out with multiple empty cores and no strain en-
ergy density effects. Figures 12 and 13 show results from
simulations with 100 empty cores in an area of 2048
�2048 with bond-breaking activation energies of Eb=7.0
and 3.0. In both simulations; and simulations with interme-
diate bond-breaking activation energies, the pitting pattern
coarsens as material is dissolved. However, the coarsening
occurs at a much earlier stage during the simulation with the

FIG. 10. Simulation of multiple etch-pit growth controlled by 100 randomly
placed edge dislocations intersecting a 2024�2024 surface. Young’s modu-
lus of Y =850, a Poisson ration of �=0.3, and a strain energy cutoff of 3.0
were used in the simulation. The magnitude of Burger’s vector was �b�
=1.0, and equal numbers of edge dislocations with Burgers vectors of +x,
−x, +y, and −y were used. The bond-breaking activation energy was set to
Eb=3.0. �a�, �b�, �c�, and �d� show the surface height field after the average
height was reduced by 80, 640, 2560, and 10240. In �d�, the gray scale
covers a height range of 1200. Most of the dissolved cores extend to depths
greater than 50 000 below the maximum surface height.

FIG. 11. �Color online� Simulation of the growth of etch pits using the no
strain/empty core model. In all parts the pit formed after the average height
had been reduced by 250 is shown. In an infinite mineral surface, the pit
shown in �a� and �c� would have grown far beyond the 1024�1024 area
shown here. �a� and �c� were obtained with a bond-breaking activation en-
ergy of Eb=8.0, and Eb=4.0 in �b� and �d�. In �a� and �b� the empty cores
have a size of 1�1, while in �c� and �d�, the empty cores have a size of
3�3. The pit in �b� has a depth of 75, while the pit in �d� has a depth of 200.
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largest bond-breaking activation energy. In simulations with
relatively large bond-breaking activation energies, the sur-
face is dominated by just a few pits after the average surface
height had been reduced by O�103�. This does not imply that
the surface becomes dominated by just a few pits at an ear-

lier time. The model time was not determined in these simu-
lations, but the overall dissolution process is slower for large
bond-breaking activation energies, and if the frequency fac-
tor A in Eqs. �1�–�4� is the same in both simulations, then the
overall dissolution rate for Eb=7.0 will be approximately
e6�400 slower than the rate for Eb=5.0, based on the idea
that the dominant dissolution process is removal of a three-
coordinate site from a kink site at the edge of a terrace. Since
the terrace edge density �step density� is smaller for larger
bond-breaking activation energies, this is a lower limit on the
actual dissolution rate ratio.

The occurrence of pit fratricide �coarsening� in the no-
strain/empty-core model cannot be attributed to the growth
of large pits in regions where the far-field strain energy is
large, but large pits could be favored in regions in which the
defect density is large. To eliminate both the far field strain
energy effects and the local defect density effects, simula-
tions were carried out using a regular array of empty cores.
Figure 14 shows some of the results from simulations carried
out with a regular array of empty cores, and no stress/strain
fields, in an area of 2048�2048. This figure shows that the
original symmetry is broken at a very early stage in the dis-
solution process and that the asymmetry continues to in-
crease with increasing time. This behavior must be attributed
to the effects of the fluctuations that are inherent in kinetic
Monte Carlo simulations due to the random selection of
events �with probabilities proportional to the local dissolu-
tion rate�. The effects of these random events accumulate as
time �and the number of random events� increases. The same
sort of fluctuations will occur during real dissolution pro-
cesses, and one of the most important attributes of kinetic

FIG. 12. Simulation of the growth of pits nucleated by 100 empty cores,
each with an area of 3�3, in an area of 2048�2048. �a�, �b�, �c�, and �d�
show the surface after the average surface height has been reduced by 80,
320, 1280, and 2560. The bond-breaking activation energy is Eb=7.0. Like
many simulations with large bond-breaking activation energies, step waves
can be clearly seen on almost flat regions of the surfaces.

FIG. 13. Simulation of the growth of pits nucleated by 100 empty cores,
each with an area of 3�3, in an area of 2048�2048. �a�, �b�, �c�, and �d�
show the surface after the average surface height has been reduced by 80,
640, 2560, and 10240. The bond-breaking activation energy is Eb=3.0.

FIG. 14. Surface morphologies obtained from simulations with a regular
array of empty cores. �a� and �b� show the etch-pit patterns for an array of
64 empty cores after the surface height was reduced by 320 and 10 240,
while �c� and �d� show the etch-pit patterns for an array of 256 empty cores
after the surface height has been reduced by 320 and 5120. In both simula-
tions, a bond-breaking activation energy of Eb=5.0 was used and the empty
cores consisted of vertical columns with a 3�3 cross section.
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Monte Carlo simulations is the realistic way in which the
effects of thermally driven fluctuations are included in the
simulations. This can be a disadvantage if Monte Carlo simu-
lations are used to simulate phenomena such as homoge-
neous chemical kinetics when the number of molecules is
much too large for fluctuations to play an important role.
However, the proper inclusion of fluctuations is essential to
the simulation of microscopic processes, and �as these simu-
lations demonstrate� these microscopic fluctuations can have
important consequences on macroscopic phenomena.

The large effect of microscopic fluctuations on the
growth of etch pits can be understood in terms of the “dis-
solution stepwave” concept.23,70 According to this model,
steps are generated at the core of a dislocation, and they
travel outward from the dislocation because the rate of dis-
solution at steps is much greater than that on a flat surface,
provided that the bond-breaking activation energy is large
enough. A consequence of this mechanism is that nucleation
of steps at the core of the defect plays a crucial role in etch-
pit formation. In the simulations shown in Fig. 12, a small
empty core already exists at the center of each pit. However,
formation of a stepwave depends on widening of this empty
core. Because relatively few dissolution events are involved
in nucleation of steps at the core of the defect, the effects of
microscopic fluctuations are unusually large. A closely re-
lated point of view is that growth of the pit amplifies the
effects of fluctuations. The sloped surface of the pit dissolves
faster than a horizontal surface because the distribution of
site coordination numbers includes more low coordination
number surface sites. As a pit becomes larger, its rate of mass
loss becomes larger, and the effects of fluctuations that favor
increased dissolution are amplified by the growth process. If
the bond-breaking activation energy is small, the stepwave
process will have to compete with the spontaneous nucle-
ation and sideway growth of shallow pits, and the contrast in
dissolution rates between the sloped and the horizontal sur-
face will be less. Consequently, the mechanisms that amplify
the effects of microscopic fluctuations will be reduced. This
is consistent with the results shown in Figs. 9 and 10 and
other simulations for both screw dislocations and edge dis-
locations with various bond breaking activation energies,
which show that coarsening of the pitting pattern progresses
more rapidly with increasing dissolution for larger bond-
breaking activation energies.

These simulation results were obtained using a cubic lat-
tice model with an initially flat �100� surface. The behavior
might be quite different if the walls of the pit form a close-
packed plane and/or the initial surface corresponds to a high-
index plane with weak interplane bonds and/or a low bond
density.

Simulations were also carried out using a “no-strain/fast
core dissolution” model in which the microscopic dissolution
rate in the regions representing dislocation cores was larger
by a constant �coordination number independent� factor km.
Figure 15 shows some of the results obtained from a simu-
lation using a regular �8�8� array of cores that are more
easily dissolved than the surrounding material. Although the
effects of the far field stress/strain fields are omitted, the
simulation was carried out using the general divide and con-

quer approach described above. There is a discrete number of
distinct events �ten of them� in this model, but the effort of
writing a new computer program to take advantage of this
was not justified in view of the fact that the more general
method could much more easily be modified, and the in-
creased overhead required to handle ten discrete events
would have decreased the rather small gap in speed between
these two methods. If the microscopic dissolution rate km is
small �Fig. 15�, deep pits do not develop, and the only effect
of the cores is the nucleation of shallow transient pits �Figs.
15�a� and 15�b��. No substantial pits were found for average
height reductions of up to ��h=2000, and Fig. 15�a� shows
the surface morphology after the average height had been
reduced by 640. It seems very likely that this is representa-

FIG. 15. Surfaces obtained from four no-strain/fast core dissolution model
simulations in which the microscopic dissolution rates were larger by a
factor of km in 64 symmetrically placed columns in a 2048�2048 surface.
Each vertical column had a cross section of 3�3 �nine sites�. A bond-
breaking activation energy of Eb=5.0 was used in all of the simulations. �a�
and �b� show the surface morphology obtained from a simulation with km

=2 and km=4 after the average surface height has been reduced by 640. �c�
�km=8, ��h=1280�, �d� �km=16, ��h=640�, �e� �km=32, ��h=640�, and �f�
�km=32, ��h=5120� show the surface morphologies obtained using larger
values of km, which leads to pit formation. However, the total range of
surface heights �the “thickness” of the surface� soon reaches an essentially
constant value. The simulations indicate that the pits slowly grow and dis-
appear as the dissolution process progresses, but the dynamics of this pro-
cess becomes increasingly slower as the dissolution rate ratio km increases.
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tive of the asymptotic �long time� behavior of the model. For
larger values of km �Figs. 15�c� and 15�d�� distinct pits are
formed. For km=8, the surface has a highly dynamic charac-
ter. The overall character of the surface does not change after
the surface height reduction has reached a small value
�O�10��. However, new pits are formed as the surface
evolves and old pits disappear. The relatively small transient
pits are nucleated by the more rapidly dissolving cores, but
only a small fraction of the cores have associated pits at any
particular stage of development.

For larger values of km the pits become deeper, longer
lived, and more distinct. Because some of the morphological
features in Figs. 15�c�–15�f� are comparable in size to the
overall system size, a simulation with km=32 was carried out
on a larger scale �Lx�Ly =4096�4096�. The results of this
simulation, not shown, indicate that the size of the morpho-
logical features do not increase with increasing system size
beyond Lx�Ly =2048�2048.

Similar simulations were carried out with other bond-
breaking activation energies. For example, for a bond-
breaking activation energy of Eb=3.0 and a dissolution rate
ratio of km=8, the qualitative appearance of the surface and
the range of surface heights quite soon became essentially
constant, but new pits formed continuously as old pits disap-
peared. This suggests that the statistics of the surface rough-
ness reaches a constant asymptotic limit. As the dissolution
rate ratio increases, the pits become more distinct, and more
material must be dissolved to reach the statistically station-
ary regime. For simulations with a bond-breaking activation
energy of Eb=3.0 and dissolution rate ratios of km=16, 32,
and 64, the surface morphology was still evolving after the
average surface height has been reduced by ��h=5120. For
km=16, hollow cores extended to a depth of about 7250, for
km=32 the hollow cores are almost 12 000 deep, and for
km=64 they extended to a depth of almost 29 000. During the
later stages of the simulations, the evolution of the pits was
quite slow. For example, in the case of the simulation with
Eb=3.0 and km=16, the relatively broad parts of the pits
�above the hollow cores� extended to depths of about 110,
125, 140, 175, and 195 for ��h=320, 640, 1280, 2560, and
5120.

Simulations were also carried out with a line of oriented
edge dislocations to represent dissolutions of systems with
low angle grain boundaries.26 The dissolution process results
in the formation of a groove with a cross section �perpen-
dicular to the direction of the line of dislocations� that ex-
hibit trends similar to those observed for the cross sections of
single pits formed by dissolution at a single edge dislocation
as the bond-breaking activation energy is changed for the
same Poisson ratio, Burgers vector, and strain energy density
cutoff. As the bond-breaking activation energy is decreased
the grooves become deeper and more steep walled, a line of
dissolved cores extends below the groove, and these dis-
solved cores become deeper as the bond-breaking activation
energy is reduced.

The origin of this behavior is essentially the same as that
of the change in pit shapes with bond-breaking activation
energy for pits dissolved around screw dislocations and edge
dislocations, and it is related to the transition from dissolu-

tion step flow at high bond-breaking activation energies to
the dissolution of microscopically rough surfaces at low
bond-breaking activation energies. For large bond-breaking
activation energies the increase in dissolution rates for solid
sites at step edges �which reduces the coordination number
from 5 for a site in a flat surface or the flat upper surface of
a terrace to 4� and the even larger increase in dissolution rate
for solid sites at kinks on step edges �which reduces the
coordination number from 5 to 3� are larger than the increase
in dissolution rate due the strain energy densities in and near
dislocation cores, and if the bond-breaking activation energy
is large enough, pit cores do not dissolve faster than the
surface as a whole. On the other hand, if the surface is rough,
the step flow mechanism is no longer effective and the rela-
tively large strain energy densities at and near the dislocation
cores allow a deep narrow hollow tube to develop, and this
tube grows progressively deeper, relative to the dissolving
surface. As the dissolved dislocation cores become progres-
sively deeper, the rate of hollow core deepening might be-
come diffusion limited because the concentration of solute
deep in the pits could increase if solute ions cannot diffuse
out of the pits rapidly enough, and the increase in the solute
ion concentrations in the deepest recesses of the pit could
allow the solubility product to be approached resulting in a
large reduction in the dissolution rate. If the dissolved dislo-
cation cores have very small diameters, the fluid in the cores
could have properties that are significantly different from
those of bulk solutions, and this could reduce �or increase�
the ion diffusion coefficients.

DISCUSSION

Motivated by the desire to simulate the simultaneous
growth of etch pits, we have developed computationally ef-
ficient kinetic Monte Carlo models and used them to carry
out simulations in which up to 4�1010 surface sites are dis-
solved. Simulations were carried out for surface areas of up
to 4096�4096 corresponding to physical scales of approxi-
mately 1�1 
m2. This paper focuses on irreversible disso-
lution. However, the fast algorithms used in this work can
easily be applied to and will work equally well for models
that include growth and surface diffusion.

Relaxation of the strained material in the vicinity of a
defect after the core has been dissolved is a potentially im-
portant issue. In the case of a point defect, this may occur
when the center of the defect is dissolved, and in the case of
a line defect, the surrounding material may partially relax
after the core has dissolved. When a point defect is exposed,
the remaining strain energy might relax completely. The
simulations with screw and edge defects indicate that a very
deep narrow core may form, particularly if the bond-
breaking activation energy is small. However, dissolution of
the core should have a relatively minor effect on the defor-
mation of the surrounding material because the strain will be
maintained by the far field displacement.

The solid-on-solid approximation is often justified by the
observation that overhangs are not commonly observed dur-
ing mineral dissolution. However, it could be argued that a
surface site undermined by dissolution at a lower level would
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dissolve rapidly leaving a surface with few overhangs, even
though dissolution occurred beneath the upper surface. Dur-
ing the pit growth simulations described in this paper, almost
all of the steps on the surface have a height of one lattice
unit, and there is no opportunity for dissolution below the
upper surface. However, large steps develop inside the deep
narrow hollow cores that can develop during dissolution, and
the solid-on-solid approximation might break down in this
crucial region. The consequences of breakdown of the solid-
on-solid approximation inside hollow pit cores will be inves-
tigated in future work.

The simple computer models described above are ca-
pable of producing a wide range of patterns. This reflects the
diversity of the pitting patterns observed during the dissolu-
tion of real minerals. The diversity and complexity of the
patterns generated by the computer models can be easily en-
hanced by adding features such as anisotropy, more complex
spatial distributions of defects, and a mixture of different
types of dislocations or dislocations with different Burgers
vectors and orientations. Under these circumstances, acci-
dental coincidences between simulated surface morphologies
and the morphologies observed in real systems should not be
taken too seriously.

The development of fast algorithms, which make it pos-
sible to carry out simulations with large surface areas and
follow the dissolution process until deep pits have been
formed, will allow us to investigate issues such the evolution
of the pit size distribution and possible scaling behavior as-
sociated with the geometry and dynamics of the dissolving
surface. It will also allow smaller scale simulations to be
carried out many times to obtain more accurate information
about the evolution of the shapes of individual pits and sys-
tematically explore the dependence of the model behavior on
model parameters.
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