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Abstract
Cancer is a family of diseases, and it should be obvious that different tissues would 
have different susceptibility to radiation-induced cancer. Current radiation risk models 
assume that, while various organs and tissues may have different radiosensitivities, all 
follow a linear, nonthreshold (LNT) dose-response relationship. A more accurate (if 
more complicated) risk assessment would account for different shaped dose-response 
relationships for each cancer type. Since the most compelling risk estimates for 
radiation carcinogenesis come from human data, we examined the human data for bone 
cancer and liver cancer caused by intakes of radioactive materials. Excess bone cancer 
has been seen in radium workers (primarily female dial-painters at the beginning of the 
20th century) and plutonium workers at Mayak. Excess liver cancer has been seen in 
patients administered the radioactive thorium compound Thorotrast for x-ray studies, 
and also in plutonium workers at Mayak. In each case, there is evidence for, or at least 
a suggestion of, a threshold dose or dose rate below which there is no excess disease. 
Since intakes of plutonium produce dose primarily to bone and liver, a threshold in the 
dose-response relationship for these cancers would directly impact cleanup standards for 
DOE sites, and radiation protection standards for workers exposed to plutonium. Using 
state-of-the-art computer codes developed at Pacific Northwest National Laboratory, we 
show that current cleanup standards for Pu are too low by a factor of 4, and worker 
protection standards are too low by a factor of 13. This work shows that application of 
radiation-detriment models that incorporate human data for each individual endpoint 
should be used in radiation risk estimates and standards-setting.



Introduction
• Cancer is a family of diseases

• different tissues have different susceptibility to radiation
• Current radiation risk models assume

• various organs and tissues may have different 
radiosensitivities

• all follow a linear, nonthreshold (LNT) dose-response 
relationship

• Future radiation risk models
• more complicated
• more accurate
• account for different shaped dose-response relationships 

for each cancer type
• some LNT, others nonlinear, still others have thresholds

• Human data are most compelling



• where
– P is the probability of occurrence
– n is the number of tumors in an individual
– b is the background incidence rate
– k is the risk per unit dose (Gy-1)
– D is the dose (Gy)
– D0 is the threshold dose (Gy)

• if D0 is 0, then there’s no threshold
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Probable Thresholds
• Human data suggest dose & dose rate

thresholds for
– Osteosarcoma

• in Ra dial painters (D0 ~ 8 Gy)
• in Pu-exposed Mayak workers

– Liver cancer
• in Thorotrast patients
• in Pu-exposed Mayak workers
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Model-free data visualization using rolling, weighted averages
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Threshold Likely in Radium Workers

• LNT model predicts 12 cases when 1 is observed
• LNT is not likely to be correct; LT is likely correct
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Mayak Workers

Bone Cancer
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Fraction of Effective Dose to Various 
Tissues from Inhalation of Plutonium
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• bone surfaces 
and liver 
account for 
75% of effective
dose

• if there’s a 
threshold, only 
red marrow, 
gonads, lung, 
and “other”
matter



Example: Plutonium
• Internal Pu primarily irradiates bone and 

liver
• If thresholds exist, then only the irradiation 

that occurs above a certain dose rate matters
• Dose, especially committed dose, alone does 

not predict risk in this case
• Must model entire time course of irradiation 

in each tissue
• There’s nothing “linear” about it



Result: Standards for Human Intakes of 
Plutonium Increase for Same Risk

• Cleanup standards increase by a factor of 4
• environmental standards are based on stochastic effects, 

i.e., limiting 50-year committed effective dose to 0.05 Sv
• Occupational exposure standards increase by a factor 

of 13
• occupational standards are based on deterministic effects, 

i.e., limiting 50-year committed dose to bone surfaces to 
0.5 Sv (0.025 Gy for a-particles)

• Higher values for cleanup standards result in 
• less cleanup
• lower cost



Conclusions
• Different cancer endpoints require different 

dose-response models
• Human data show that cancer dose-response 

relationships may be
– LNT (Linear-Nonthreshold)
– LQ (Linear-Quadratic)
– LT (Linear-Threshold)

• Using cancer-specific dose-response models 
can result in more accurate risk estimates

• For plutonium, dramatic savings in cleanup 
can be realized from using the correct models 
based on human data
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