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Outline (First 8 Hours)
• HPS 2000 Summer School was devoted entirely to applications of probability and statistics in 

health physics (Borak 2000a)
• Focus only on a few aspects of the problem

– reliance on earlier proceedings
– links to much excellent material available for free over the internet

• Review of general statistical concepts from ISO GUM and other sources
– meanings of probability
– statistical distributions
– population versus sample statistics
– variability, uncertainty, bias, error, and blunder
– correlation and “shared” uncertainty
– the source of uncertainty
– expressions of uncertainty

• Numerical thresholds for decisions
– e.g.,  whether radioactive material is present above background levels
– missed dose
– unmonitored dose

• Case studies
– reconstructing x-ray doses
– reconstructing worker doses
– uncertainty in internal dosimetry
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1995 ISO Guide to the Expression of  
Uncertainty in Measurement (GUM) 

• Extensive, well-thought-out framework for dealing 
with uncertainty in measurement
– Clearly-defined concepts and terms
– Practical approach
– Some new words may not exist in Russian

• Doesn’t cover 
– the use of measurements in models that have uncertain

• assumptions
• parameters
• form

– representativeness (e.g., of a breathing-zone air sample)
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Meanings of Probability: 1 – Classical
• The possible outcomes of an event are analyzed 

into a set of elementary, equally probable events
• The probability of a particular outcome is then the 

number of elementary events producing the 
outcome divided by the total number of 
elementary events” (Little 2000)

• Also called mathematical, formal, or axiomatic 
probability (Kaplan 1997)
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Meanings of Probability: 2 – Frequentist

– randomness
– variability
– aleatory probability
– objective probability
– in the world 

probability

– stochastic ontological 
probability

– reliability
– chance
– risk

• The probability of an outcome is its frequency in the 
limit of an infinite number of trails (Little 2000)

• This frequency, or fraction, definition has at least nine 
other incarnations (Kaplan 1997):
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Meanings of Probability: 3 – Subjective

– Bayesian probability
– belief
– personal probability
– uncertainty
– confidence

– epistemic probability
– plausibility
– credibility
– evidence-based 

probability 

• The probability of an event is based on the observer’s 
assessment of a coherent bet

• Different observers need not agree on the probability of 
an outcome (Little 2000)

• Synonyms (Kaplan 1997)

• “Probability is that degree of credibility or confidence 
dictated by the evidence through Bayes’ theorem”
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Meanings of Probability: ISO GUM (1995)
• [Probability is a] real number in the scale of 0 to 1 

attached to a random event
• Note – it can be related to a long-run relative 

frequency of occurrence or to a degree of belief 
that an event will occur

• For a high degree of belief, the probability is near 1
• This definition avoids controversy
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Statistical Distributions 
• Borak (2000)
• Crystal Ball (2007)
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Statistical Distributions:
Crystal Ball
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Population Parameters versus Sample Statistics 

• A critical distinction
• Greek letters denote population parameters
• Roman letters to denote samples from populations
• Standard deviation

– σ: population SD
– s: SD of sample from that population

• when people talk about “2 sigma,” for example, 
using “sigma” as a synonym for standard 
deviation, the distinction between a population 
parameter and a sample statistic is lost
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Population Mean µ and Sample Mean     
• arithmetic mean height of a population consisting 

of all n of the participants in this PDS:

where xi is the height of the ith individual
• µ can be estimated by measuring the height of k

randomly selected people from the population: 
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1995 ISO GUM General Metrological Terms - 1

set of operations having the object of determining a value 
of a quantity

measurement

value attributed to a particular quantity and accepted, 
sometimes by convention, as having an uncertainty 
appropriate for a given purpose

conventional true 
value (of a quantity)

value consistent with the definition of a given particular 
quantity. Not used in the GUM; “value of a measurand” is 
used.

true value (of a 
quantity)

magnitude of a particular quantity generally expressed as a 
unit of measurement multiplied by a number

value (of a quantity)

attribute of a phenomenon, body, or substance that may be 
distinguished qualitatively and determined quantitatively

(measurable) 
quantity

MeaningISO-GUM Term
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1995 ISO GUM General Metrological Terms - 2

quantity that is not the measurand but that affect the result 
of the measurement

influence quantity

particular quantity subject to measurement. [the unknown 
value of a physical quantity representing the “true state of 
Nature”]

measurand

set of operations, described specifically, used in the 
performance of particular measurements according to a 
given method

measurement 
procedure

logical sequence of operations, described generically, used 
in the performance of measurements

method of 
measurement

scientific basis of a measurementprinciple of 
measurement

MeaningISO-GUM Term
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1995 ISO GUM General Metrological Terms - 3

closeness of the agreement between the results of 
successive measurements of the same measurand carried 
out under the same conditions of measurement

repeatability (of 
results of 
measurements)

closeness of the agreement between the result of a 
measurement and a true value of the measurand

accuracy of 
measurement

result of a measurement after correction for systematic 
error (i.e., bias)

corrected result

result of a measurement before correction for systematic 
error (i.e., bias)

uncorrected result

value attributed to a measurand, obtained by measurementresult of a 
measurement

MeaningISO-GUM Term



15

1995 ISO GUM General Metrological Terms - 4

for a series of n measurements of the same measurand, the 
quantity s(qk) characterizing the dispersion of the results 
and given by the formula 

, qk being the result of the kth measurement and being the 
arithmetic mean of the n results considered. Note that  is an 
estimate of the standard deviation of the distribution of  and 
is called the experimental standard deviation of the mean 
(not the standard error of the mean)

experimental 
standard deviation

closeness of agreement between the results of 
measurements of the same measurand carried out under 
changed conditions of measurement

reproducibility (of 
results of 
measurements)

MeaningISO-GUM Term
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1995 ISO GUM General Metrological Terms - 5

result of a measurement minus the mean that would result 
from an infinite number of measurements of the measurand 
carried out under repeatability conditions

random error

error of measurement divided by a true value of the 
measurand

relative error

result of a measurement minus a true value of the 
measurand (i.e., the [unknowable] difference between a 
measured result the actual value of the measurand.) “Error 
is an idealized concept and errors cannot be known 
exactly” (Note 3.2.1)

error (of 
measurement)

parameter, associated with the result of a measurement, that 
characterizes the dispersion of the values that could 
reasonably be attributed to the measurand. It is a bound for 
the likely size of the measurement error.

uncertainty (of 
measurement)

MeaningISO-GUM Term
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1995 ISO GUM General Metrological Terms - 6

Numerical factor by which the uncorrected result of a 
measurement is multiplied to compensate for systematic 
error

correction factor

value added algebraically to the uncorrected result of a 
measurement to compensate for systematic error

correction

mean that would result from an infinite number of 
measurements of the same measurand carried out under 
repeatability conditions minus a true value of the 
measurand

systematic error
MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 1

A function giving, for every value x, the probability that the 
random variable X will be less than or equal to x: F(x) = 
Pr(X ≤ x)

distribution function

A function giving the probability that a random variable 
takes any given value or belongs to a given set of values

probability 
distribution (of a 
random variable)

A variable that may take any of the values of a specified set 
of values and with which is associated a probability 
distribution

random variable; 
variate

A real number in the scale of 0 to 1 attached to a random 
event. Note – it can be related to a long-run relative 
frequency of occurrence or to a degree of belief that an 
event will occur. For a high degree of belief, the probability 
is near 1.

probability
MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 2

For a discrete random variable X taking the values xi with 
the probabilities pi, the expectation, if it exists, is 

. For a continuous random variable X
having the probability density function f(x), The 
expectation, if it exists, is 

, the integral being extended over 
the interval(s) of variation of X.

expectation (of a 
random variable or of 
a probability 
distribution); 
expected value; mean

The relationship between two or several random variables 
within a distribution of two or more random variables

correlation

A quantity used in describing the probability distribution of 
a random variable

parameter

A function giving, for each value xi of a discrete random 
variable X, the probability pi that the random variable 
equals xi: pi = Pr(X = xi)

probability mass 
function

MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 3

In a univariate distribution, the expectation of the qth power 
of the centered random variable (X - µ): 

central moment of 
order q

The positive square root of the variance: standard deviation 
(of a random variable 
or of a probability 
distribution)

The expectation of the square of the centered random 
variable: 

variance (of a 
random variable or of 
a probability 
distribution)

A random variable the expectation of which equals zerocentered random 
variable

MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 4

The empirical relationship between the values of a 
characteristic and their frequencies or relative frequencies

frequency 
distribution

The number of occurrences of a given type of event or the 
number of observations falling into a specified class

frequency

The totality of items under considerationpopulation

A property which helps to identify or differentiate between 
items of a given population

characteristic

The probability distribution of a continuous random 
variable X, the probability density function of which is

for −∞ < x < ∞.

normal distribution; 
Laplace-Gauss 
distribution

MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 5

the sum of values divided by the number of values:arithmetic mean; 
average

MeaningISO-GUM Term
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the most frequently occurring valuemode

the value in the middle of a distribution, such that there is 
an equal number of values above and below the median. 
Also known as the 50th percentile, x50

median

the nth root of the product of n values:

For 2 values, 

geometric mean
Meaning

Non- ISO-GUM 
Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 6

In a distribution of a single characteristic, the arithmetic 
mean of the qth power of the difference between the 
observed values and their average    : 

where n is the number of observations.

central moment of 
order q

The positive square root of the variance. Note – the sample 
standard deviation is a biased estimator of the population 
standard deviation.

(sample) standard 
deviation

A measure of dispersion, which is the sum of the squared 
deviations of observations from their average divided by 
one less than the number of observations:

. 
Note – the sample variance is an unbiased estimator of the 
population variance.

variance; sample 
estimate of the 
variance

MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 7

The value of an estimator obtained as a result of an 
estimation.

estimate

A statistic used to estimate a population parameterestimator

The operation of assigning, from the observations in a 
sample, numerical values to the parameters of a distribution 
chosen as the statistical model of the population from 
which this sample is taken

estimation

A function of the sample random variables. Note – a 
statistic, as a function of random variables, is also a random 
variable and as such it assumes different values from 
sample to sample. The value of the statistic obtained by 
using the observed values in this function may be used in a 
statistical test or as an estimate of the population parameter, 
such as a mean or a standard deviation.

statistic
MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 8

When T is a function of the observed values such that, θ
being a population parameter to be estimated, the 
probability Pr(T ≥ θ ) [the probability Pr(T ≤ θ )] is at least 
equal to (1 − α) [where (1 − α) is a fixed number, positive 
and less than 1], the interval from the smallest possible 
value of θ up to T (or the interval from T up to the largest 
possible value of θ) is a one-sided (1 − α) confidence 
interval for θ .

one-sided confidence 
interval

When T1 and T2 are two functions of the observed values 
such that, θ being a population parameter to be estimated, 
the probability Pr(T1 ≤ θ ≤ T2) is at least equal to (1 − α) 
[where (1 − α) is a fixed number, positive and less than 1], 
the interval between T1 and T2 is a two-sided (1 − α) 
confidence interval for θ .

two-sided confidence 
interval

MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 9

-standard deviation

-variance

-expectation

In general, the number of terms in a sum minus the number 
of constraints on the terms of the sum

degrees of freedom

An interval for which it can be stated with a given level of 
confidence that it contains at least a specified proportion of 
the population

statistical coverage 
interval

The value (1−α) of the probability associate with a 
confidence interval or a statistical coverage interval.

confidence 
coefficient; 
confidence level

MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 10

The covariance of two random variables is a measure of 
their mutual dependence. The covariance of random 
variables y and z is defined by 

, which leads to

where p(y, z) is the joint probability density function of the 
two variables y and z. The covariance cov(y, z) [also 
denoted by υ(y,z)] may be estimated by s(yi,zi) obtained 
from n independent pairs of simultaneous observations yi
and zi of y and z, 

covariance
MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 11

Two random variables are statistically independent if their 
joint probability distribution is the product of their 
individual probability distributions.

independence

The correlation coefficient is a measure of the relative 
mutual dependence of two variables, equal to the ratio of 
their covariances to the positive square root of the product 
of their variances. Thus,

with estimates

The correlation coefficient is a pure number such that 
−1 ≤ ρ ≤ +1 or −1 ≤ r ≤ +1.

correlation 
coefficient

-covariance matrix
MeaningISO-GUM Term
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1995 ISO GUM Basic Statistical Terms & Concepts - 12

The t-distribution or Student’s distribution is the probability 
distribution of a continuous random variable t whose 
probability density function is

where Γ is the gamma function and ν > 0. The expectation of 
the t-distribution is zero and its variance is ν/(ν − 2) for ν > 2. 
As ν→ ∞, the t-distribution approaches a normal distribution 
with µ = 0 and σ = 1.
The probability distribution of the variable is the t-distribution 
if the random variable z is normally distributed with expectation 
µz, where                       is the arithmetic mean of n independent 
observations zi of z, s(zi) is the experimental standard deviation 
of the n observations, and                             is the experimental 
standard deviation of the mean with ν = n − 1 degrees of 
freedom

the t-
distribution; 
Student’s 
distribution

MeaningISO-GUM Term
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1995 ISO GUM Additional Terms & Concepts - 1

uncertainty that is evaluated by means other than the 
statistical analysis of a series of observations

“Type B” uncertainty 
evaluation

uncertainty that is evaluated by the statistical analysis of 
series of observations

“Type A” uncertainty 
evaluation

“Blunders in recording or analyzing data can introduce a 
significant unknown error in the result of a measurement. 
Large blunders can usually be identified by a proper review 
of all the data; small ones could be masked by, or even 
appear as, random variations. Measures of uncertainty are 
not intended to account for such mistakes.” (3.4.7) Other 
terms include mistake and spurious error.

blunder
MeaningISO-GUM Term
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1995 ISO GUM Additional Terms & Concepts - 2

numerical factor used as a multiplier of the combined 
standard uncertainty in order to obtain an expanded 
uncertainty

coverage factor

quantity defining an interval about the result of a 
measurement that may be expected to encompass a large 
fraction of the distribution of values that could reasonably 
be attributed to the measurand

expanded uncertainty

standard uncertainty of the result of a measurement when 
that result is obtained from the values of a number of other 
quantities, equal to the positive square root of a sum of 
terms, the terms being the variances of covariances of these 
other quantities weighted according to how the 
measurement result varies with changes in these quantities.

combined standard 
uncertainty

MeaningISO-GUM Term
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Type A and Type B Uncertainty
• Uncertainty that is evaluated by the statistical 

analysis of series of observations is called a 
“Type A” uncertainty evaluation.

• Uncertainty that is evaluated by means other
than the statistical analysis of a series of 
observations is called a “Type B” uncertainty 
evaluation.
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Terms: Error, Uncertainty, Variability
• “The difference between error and uncertainty should 

always be borne in mind.”
• “For example, the result of a measurement after 

correction can unknowably be very close to the unknown 
value of the measurand, and thus have negligible error, 
even though it may have a large uncertainty.”

• “Error bars?” No! “Uncertainty bars” is what we should 
say

• Variability is the range of values for different individuals 
in a population
– e.g., height, weight, metabolism
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Graphical Illustration of Value, Error, and Uncertainty
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Graphical Illustration of Value, Error, and Uncertainty
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Graphical 
Illustration 
of Value, 
Error, and 
Uncertainty
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Random and Systematic “Errors”

result of a measurement minus the mean that would result 
from an infinite number of measurements of the measurand 
carried out under repeatability conditions

random error

mean that would result from an infinite number of 
measurements of the same measurand carried out under 
repeatability conditions minus a true value of the 
measurand

systematic error

MeaningISO-GUM Term
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Random and Systematic Uncertainty versus 
Type A and Type B Uncertainty Evaluation

• GUM: There is not always a simple correspondence 
between the classification of uncertainty components into 
categories A and B and the commonly used classification 
of uncertainty components as “random” and 
“systematic.”

• The nature of an uncertainty component is conditioned 
by the use made of the corresponding quantity, that is, on 
how that quantity appears in the mathematical model that 
describes the measurement process. 

• When the corresponding quantity is used in a different 
way, a “random” component may become a “systematic”
component and vice versa. 
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Random and Systematic Uncertainty
• Thus the terms “random uncertainty” and “systematic 

uncertainty” can be misleading when generally applied. 
• An alternative nomenclature that might be used is 

“component of uncertainty arising from a random 
effect,” “component of uncertainty arising from a 
systematic effect,” where a random effect is one that 
gives rise to a possible random error in the current 
measurement process and a systematic effect is one that 
gives rise to a possible systematic error in the current 
measurement process. In principle, an uncertainty 
component arising from a systematic effect may in some 
cases be evaluated by method A while in other cases by 
method B (see subsection 2.2), as may be an uncertainty 
component arising from a random effect. 
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Type A Uncertainty Evaluation
• represented by a statistically estimated standard 

deviation

• associated number of degrees of freedom = vi. 
• the standard uncertainty is ui = si. 

2
ii ss =
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Type B Uncertainty Evaluation
• represented by a quantity uj

• Since the quantity uj
2 is treated like a variance and uj

like a standard deviation, for such a component the 
standard uncertainty is simply uj.
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Combined Standard Uncertainty
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The First Step
• Must know what y depends on, and how:

)...,,,( 21 nxxxGy =
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Uncertainty Propagation Formula
• Combined standard uncertainty

• Derived from first-order Taylor series expansion
• Not accurate for large uncertainties (e.g., broad 

lognormal distributions)
• Covariances usually unknown and ignored
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Uncertainty Propagation Formula – 2
• Formulation using correlation coefficient r(xi,xj)

• See Rolf Michel’s wipe test example:
http://www.kernchemie.uni-

mainz.de/downloads/saagas21/michel_2.pdf
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Numerical Methods
• Monte Carlo simulations, with covariances, may 

be needed to explore uncertainty
• Crystal Ball® does this easily



Inferring Dose from 
Measurements, Models, 

Assumptions, or None of the 
Above
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Dosimetry, Dosinference, and Doswaggery
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Word Choice Based on Uncertainty

1.01 to 2~~Dosimetry

2 to 20~Dosinference

>20~Doswaggery

Imputed 
Data

Model 
ParametersModels

Measure-
ments

Ratio of
97.5%ile

to 2.5%ile

of Inferred 
Dose

Typical Dominant Uncertainty

Term

T denotes important; TT denotes very important; ~ relatively trivial
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Calling a Spade a Spade…
• maybe it’s time to choose different words when 

the dose in question is measured, inferred, or 
essentially assumed

• dosimetry when measurement uncertainty 
predominates

• dosinference when model parameter uncertainty 
predominates

• doswaggery when assumption or imputed value 
uncertainty predominates



Reporting and Recording of 
Measurement Results
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“Censoring” of Data
• Censoring data means changing measured results from 

numbers to some other form that cannot be added or 
averaged or analyzed numerically

• Examples of data censoring
– Left-censoring

• changing results that are less than some value to zero
• changing results that are less than some value to “less than” some value

– Right-censoring
• changing values from the measured result to “greater than” some value

– Rounding
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Why should censoring of data be avoided?

• Censoring means changing the numbers
• In a sense, it is dishonest
• If results are ever 

– summed, 
– averaged, or 
– used for some other aggregate analysis such as fitting a 

distribution, 

censoring makes this 
– difficult, 
– impossible, or 
– simply biased.
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Censoring Examples
• Five results for discharge from a pipe taken over 1 year

– uncensored results: −2, −1, 0, 1, and 2
– sum = 0 (total discharge for the year is 0)
– average = 0 (average discharge for the year is 0)

• Example 1: Set negative values to zero
– censored results: 0, 0, 0, 1, and 2
– sum = 3 (i.e., total discharge for the year is 3; this is not true)
– average = 0.6 (i.e., average discharge for the year is 0.6; false)

• Example 2: Suppose LC = 2. Set all values < 2 to “<”
– censored results: <, <, <, <, and 2
– sum = ? (total discharge for the year cannot be determined)
– average = ? (average discharge for the year cannot be 

determined)
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But Negative Activity Is Meaningless…

• No, it’s not meaningless
• Just like money, subtracting a big number from a small 

number gives a negative value
– You have 100€, you charge 200€, you owe 100€
– 100€ − 200€ = −100€ (your net value)
– this doesn’t mean you can find a bank note for −100€
– stocks go up and down; the end of the year value includes all 

changes, positive and negative
• Negative activity only means that random statistical 

fluctuations resulted in a negative number
• If negative, zero, or less-than values are suppressed, the 

sum is biased.
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More Reasons Not to Censor

• Upper confidence limits of negative, zero, or less-than 
values
– may be small positive numbers
– needed for some applications (e.g., probability of causation)

• Censoring is prohibited by many standards and regulations
– ANSI N13.30-1996: “Results obtained by the service laboratory 

shall be reported to the customer and shall include the following 
items …quantification using appropriate blank values of 
radionuclides whether positive, negative, or zero”

– Many U.S. Department of Energy regulations require reporting 
raw data, calculated results (positive, negative, or zero), and total 
propagated uncertainties

– Decision on actions can be made with uncensored data
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Rounding Is Censoring
• Rounding a number is 

– changing its value
– biasing the value
– censoring

• Rounding often “justified” by claiming uncertainty
– Uncertainty does not justify changing the answer
– Explicitly state the uncertainty

• Beware of converting units of a rounded number and then 
rounding again!

• Intermediate results and laboratory records should never 
be rounded

• The only time to round is in presentations or 
communications
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Censoring

Report and Record All 
Measurements with No Censoring 

and Minimal Rounding



Expressing What We Know 
About a Quantity
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What We Really Need to Know About a Number

1. the quantity
2. the unit
3. how the number was obtained (measurement, 

calculation using 1 or more measurements, model, 
estimate, …)

4. the value
5. the uncertainty
6. the kind of uncertainty (standard deviation, geometric 

standard deviation, range)
7. how the uncertainty was obtained (e.g., repeated 

measurements, calculations, models, estimate…)
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Example of 7-Vector for 2 Numbers

Multi-tracer method; 
Resampling Statistics

ISO T.P.U.How uncertainty 
obtained

G.S.D.S.D.Type of Uncertainty
3.50.03Uncertainty
420.13Value

Serial Pu/Am Urine & 
Fecal Bioassay; ICRP 68 

Models; IMBA

OSL DosimeterHow obtained
mSvmSvUnit

Committed Effective 
Dose

Deep Dose 
Equivalent

Quantity
Intake

External 
Irradiation

Component of           
7-Vector



The Two Aspects of 
the Counting Problem
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The Two Counting Problems
• Radioactive decay is a Bernoulli process described by 

a binomial or Poisson distribution
– A Bernoulli process is one concerned with the count of the 

total number of independent events, each with the same 
probability, occurring in a specified number of trials

• The “forward problem”
– from properties of the process, we predict the distribution of 

counting results (mean, standard deviation (SD))
– measurand → distribution of possible observations

• The “reverse problem”
– measure a counting result
– from the counting result, we infer the parameters of the 

underlying binomial or Poisson distribution (mean, SD)
see, e.g., Rainwater and Wu (1947)

– this is the problem we’re really interested in!
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A Fundamental Problem of Statistical 
Inference

• Aristotle’s syllogisms
– All humans are mortal
– Socrates is human
– Therefore, Socrates is mortal

• Necessary prerequisite: the premises must be absolutely 
certain

• This reasoning becomes invalid when applied to 
probabilistic premises*

*Beck-Bornholdt, H.P. Is the Pope an Alien?, Nature 381(27 June), 730 (1996).



65

Reasoning becomes invalid when 
applied to probabilistic premises

• Is the Pope an Alien?
– Probabilistic premise: If we randomly pick a human being, 

chances are 1 in 6 billion it’s the pope (p ≈ 0.000 000 000 17)
– If an individual is human, it’s probably not the pope (p ≈ 0.000 

000 000 17)
– Benedict XVI is the Pope
– Therefore, he is not a human being (p ≈ 0.000 000 000 17)
– Which is obviously not sensible!

• Change from absolute certainty to probability makes 
syllogistic reasoning false
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Statistical Hypothesis Testing
• Usual line of reasoning

– If the null hypothesis is true, these data are unlikely (p
< 0.05)

– the data have occurred
– therefore the null hypothesis is wrong (p < 0.05)

• Aristotle noticed over 2,000 years ago that this 
type of inference is wrong
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Two Kinds of Statistics
• Classical statistics 

– does the forward problem well
– does not really do the reverse problem

• Bayesian statistics does the reverse problem 
using 
– a prior probability distribution
– the observed results
– a likelihood function (a classical expression of the 

forward problem)



The Forward Problem
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The Forward Problem

• Use Poisson statistics to predict the distribution of 
observations from a given value of the measurand

• The measurand is best thought of as a count rate ρ
– otherwise it is difficult to deal with different counting 

times
• The observable is a number of counts, N, sampled

– from a Poisson distribution
– during time t
– with mean ρt

• Var(Poi(N | ρt)) = ρt



70

The Forward Problem: A Bernoulli Process

1. It consists of M trials (i.e., M atoms each 
having a chance to transition)

2. Each trial has a binary outcome: success of 
failure (transition or not)

3. The probability of success (transition) is 
constant from trial to trail (all atoms have an 
equal chance to transition)

4. The trials are independent
Turner JE. 1995. Atoms, Radioactivity, and Radiation Protection, 2nd ed., p. 290 
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Binomial Distribution - 1
• Consider

• Probability that exactly N will decay in time t is
tep

M
t  in time decaying of 1

yprobabiliteach with  atoms, eradioactiv 
λ−−=

)!(!
!t coefficien binomial  thewhere

)1(),|(

NMN
M

N
M

pp
N
M

pMNBi NMN

−
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −



72

Binomial Distribution - 2

)1(     :deviation Standard

      :Mean         

1),|(     :normalized is          
0

pMp

Mp

pMNBiBi
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N
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=∑
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• Excellent discussion in Turner (1995)
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Poisson Distribution - 1

!
)|(

N
eNPoi

Nμμ
μ−

=

• Expected number of counts N given Poisson 
mean μ

• If 
M >> 1 (lots of radioactive atoms)
M >> N (not too many of them decay), and
p << 1 (decay probability during counting is low)

then the Poisson distribution is an excellent 
approximation to the binomial distribution
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Poisson Distribution, μ = ρt = 0.1
Poisson(N|.1)
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Poisson Distribution, μ = ρt = 1

Poi(N|1)

N

Poisson(N|1)
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Poisson Distribution, μ = ρt = 3

Poi(N|3)

N

Poisson(N|3)
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Poisson Distribution, μ = ρt =10

Poi(N|10)

N

Poisson(N|10)
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Normal Approximation to the Poisson
• No one tries to approximate a Poisson distribution 

with a Normal distribution in counting problems
• The normal approximation is applied to the 

difference of two Poisson distributions
• typically much more symmetric
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Difference of 2 Poisson Distributions

• When means are equal (e.g., blanks), are 
symmetric

• Discrete, not continuous 
– For μb = 3, P(N<0) = 0.42, P(N<0) = 0.58
– For Normal, P(N<0) = 0.500, P(N<0) = 0.500

• Probabilities on upper tails aren’t too much 
different from Normal
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Difference of 2 Poissons with μ = ρt = 3
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Difference of 2 Poissons with μ = ρt = 3
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Difference 
of 2 

Poissons 
with 

μ = ρt = 3

N_net

Diff. of 2 
Poissons, 
Mean=3

Normal, 
Mean=0, 

SD= 
SQRT(6) N_net

Diff. of 2 
Poissons, 
Mean=3

Normal, 
Mean=0, 

SD= 
SQRT(6)

-14 1.4E-7 5.5E-9 0 0.583 0.500
-13 1.2E-6 5.6E-8 1 0.735 0.658
-12 6.4E-6 4.8E-7 2 0.851 0.793
-11 2.9E-5 3.6E-6 3 0.926 0.890
-10 0.00012 0.00002 4 0.967 0.949
-9 0.00044 0.00012 5 0.987 0.979
-8 0.0015 0.0005 6 0.995 0.993
-7 0.0046 0.0021 7 0.9985 0.9979
-6 0.0129 0.0072 8 0.9996 0.9995
-5 0.033 0.021 9 0.99988 0.99988
-4 0.074 0.051 10 0.99997 0.999978
-3 0.149 0.110 11 0.999992 0.999996
-2 0.265 0.207 12 0.999998 1
-1 0.417 0.342 13 0.999999 1
0 0.583 0.500 14 0.999999 1



The Observables 
and the Measurands
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The Observables
• Same apparatus for blank and sample
• Assume count times known (“time preselection”

in ISO parlance)
• Assume no non-Poisson variance

– sometimes not valid in the real world
– see, e.g., Kathren 2001, ISO 1995

• Assume observed count is maximum likelihood 
estimate and estimate of its variance (“the Great 
Leap of Inference”)
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Notation - 1: Observed Quantities
• Convention: Roman letters denote observed 

quantities
• Nb: number of  blank counts observed
• Ng: number of gross counts observed
• tb: blank count time (s)
• tg: gross count time (s)
• Rb: blank count rate (s−1)
• Rg: gross count rate (s−1)
• Rn: net count rate (s−1)
• s(Rn): standard deviation of net count rate (s−1)
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Classical Statistics: Traditional 
Relationships Among Observed Quantities
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A Poor Assumption: 
“N is a good estimate of Var(N)”

2
g

g
2
b

b
n

1
 1)(

t
N

t
NRs

+
+

+
=

• A better assumption may be
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Notation  2: The Measurands -
[Unknown] Population Parameters

• By convention, Greek letters denote population 
parameters

• These reflect the measurand, the “true state of 
Nature” that we are trying to infer

• ρb: long-term  blank count rate (s−1)
• ρn: long-term net count rate (s−1) (due to analyte in 

unknown)
• ρg: long-term gross count rate (s−1)
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Notation 3: The Measurands -
[Unknown] Population Parameters

• Parameters are needed for sampling from 
population distributions

• μb: number of  blank counts expected during tb

• μg: number of gross counts expected tg

• σ(ρn): standard deviation of long-term net count 
rate (s−1)
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Classical Statistics: 
Relationships Among Population Parameters
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The Reverse Problem



92

The Reverse Problem: 
Using Observed Quantities to Estimate 
Population Parameters (Measurands)

• Classical statisticians
– use Rn to estimate ρn

– use s(Rn) to estimate σ(ρn)
• ofter a poor assumption for low numbers of counts

– every time you make another measurement, you get a 
new Rn and s(Rn), that is, a new estimate of ρn and 
σ(ρn)

• Bayesian approach shown later



Decision Rules
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Terminology Is a Mess! and This Is Just in English!
 “DL” “MDA” 

Name decision level minimum detectable amount 

What? the lowest useable action level NOT an action level! 

Use: compare measurements to DL Use in planning, advertising or in a statement of 
work for a contractor: “How much will you charge 
to provide counting services with this MDA?” 

When? a posteriori: after the 
measurement is made 

a priori: before the measurement is made  
(but it does “vary with the nature of the sample” – 
NUREG-4007) 

Defined in HPS/ANSI N13.30 HPS/ANSI N13.30 

Currie’s Name critical level, LC detection level, LD 

Ill-defined Names  lower limit of detection, LLD; also, un-fortunately, 
“lower level discriminator,” detection limit, limit of 
detection (“LOD”) 

Turner’s name “minimum significant measured 
activity” 

“minimum detectable true activity” 

ISO 11929 name “decision threshold” “detection limit” 

Spanish name umbral de decision limite de deteccion 

MARLAP name “critical value of []” “minimum detectable amount” or “minimum 
detectable concentration” 

Strom’s name “false alarm level” “advertising level” 
“expected detection capability” 
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<DL <MDA

Always compare a result with DL
Never compare a result with MDA!
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<LC <LD

Always compare a result with LC
Never compare a result with LD!

LC is a threshold.

Translation:



Spearing Fish in a 
Mountain River:

Statistical Decision Criteria
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Decision: 
Do You Spear It?
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Spearing Fish in a Mountain River
• You are forbidden to keep fish shorter than 30 cm
• It’s a lot of work to spear a fish, and you don’t want to 

injure or kill a lot of fish that you can’t keep
• The water is rough and foamy, the current is fast, and the 

fish are going in all directions, so you can’t tell the size 
of a fish very well before you spear it 

• If you spear every fish that appears to be at least 30 cm, 
you needlessly injure or kill lots of fish that are less than 
30 cm; and of course you do spear some “keepers” that 
are longer than 30 cm
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Fisher’s Decision: Is It a Keeper?
• Question: How long must a fish appear to you so that 

only a few (say, about 1 in 20) will actually be less than 
30 cm?

• You determine from experience that if you only spear 
fish that look like they’re, say, 40 cm, then only a few 
(about 1 in 20) will actually be less than 30 cm

• 40 cm is your threshold for the decision to spear
• However, you miss some fish that are somewhat longer 

than 40 cm because, due to water conditions, they appear 
to you like they’re less than 40 cm
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What Size Will You Almost Always Spear?
• Question: How long does a fish really have to be so that 

there’s only a small chance (say, about 1 in 20) that it 
will appear to be less than 40 cm?

• You determine from experience that fish that are actually 
50 cm have only a small chance (about 1 in 20) of 
appearing to be 40 cm or less

• 50 cm is the shortest fish that you will almost always 
catch when you decide to spear only those fish that 
appear to be at least 40 cm.
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Results of Your Decision Rule

• You only spear fish whose true size is 40 cm about half 
the time, because 
– half the time they look like they’re shorter than 40 cm (don’t 

spear), and 
– half the time they look like they’re longer than 40 cm

• You only spear fish whose true size is 30 cm about 1 
time in 20 because they rarely look like they’re 40 cm or 
more

• You almost always (19 times out of 20) spear fish that 
are 50 cm or longer because they almost always appear 
to be over 40 cm
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Analogy with Counting Statistics

“MDA” or 
“detection level”

(LD)

decision threshold, 
“decision level”
(DL) or “critical 

level” (LC)

above background
Counting

> 50 cm

> 30 cm
True Size

% 
SpearedFishing

Apparent 
Size

95%Good chance of 
appearing to be

a keeper

50%Good chance of 
being a keeper

> 40 cm

5%A keeper
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Measurand versus Measurement Result
• 2 “types” of errors (wrong decisions)

• I made the correct 
decision (no error)

• The alarm should have 
gone off, but didn’t
• False negative
• I’ve committed a Type 
II error

No

• False alarm
• False positive
• I’ve committed a 
Type I error

• I made the correct 
decision (no error)

YesDid I detect 
anything? 
(Was the 
result above 
the decision 
level?)

NoYes

Is anything there?                              
(Is any activity present [above blank]?)
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Error Terminology
• A Type I error (wrong decision) is falsely concluding there’s 

activity present when no activity is present
• A Type II error is falsely concluding there’s no activity present 

when activity is present
• The probability of a Type I error is called α
• The probability of a Type II error is called β
• The number of standard deviations above zero on the standard 

normal distribution having a probability of α or β of being higher 
is known as the “standard normal deviate,” kα or kβ
– these are k1−α or k1−β in ISO notation

• For α = 0.05 (a 5% chance of making a Type I error), kα = 1.645
• For β = 0.05 (a 5% chance of making a Type II error),  kβ = 1.645
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Characteristics of Many Decision Rules

Nicholson De
(1963)
Sumerling and 
Darby (1981)

“Stapleton’s 
decision criterion”
(in Strom & 
MacLellan 2001)

Nicholson D1, D3 (1963)Uses Blank 
and Sample 
Counts

DLN+1 (in Strom & 
MacLellan 2001)

ISO 11929-1 2000
Currie (1968)
ANSI N-13.30-1996
Altshuler & Pasternak 
(1963)
Nicholson D2 (1963)

Uses Blank 
(background) 
Counts Only

Exact Method or 
Binomial 
Distribution

Assumes or 
permits Var(μ) > NAssumes Var(μ) = N
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Current Decision Level 
(a.k.a. Critical Level)

• α: acceptable probability of making wrong 
decision (Type I error): false alarm or false 
positive
– α is often taken to be 0.05

• kα: value of standard normal deviate for area 1-
α
– k0.05 is 1.645

• ignore non-Poisson uncertainty for simplicity
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Standard Normal Distribution, μ =0, σ = 1
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Current “N13.30” Decision Rule
• Nicholson’s (1963) D2 rule; Currie’s (1968) rule; 

ANSI/HPS N13.30-1996; MARSSIM; Equation 
15a, Table 1 of ISO 11929-1:2000

• For α = 0.05

• Expressed as a rate, for non-paired blank:

b0bN13.30 2),( NkskNDL ααα ==

bbbN13.30 329.22645.1)05.0,( NNNDL ==
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b
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NkRDL αα
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Problems with the “N13.30” Decision Rule

• Should be horizontal lines at α′ = α
• 25% wrong decisions at μb ≈ 0.7 count, regardless 

of α
• Actual false positive rate α′ is independent of α at 

very small numbers of counts 
μb = ρbtb << 1

• Even at μb = 10, only asymptotically approaches α
for larger values

• For very small α, no good even at μb = 100!



The Bayesian Approach to the 
Reverse Problem
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The Reverend Thomas Bayes 
1702-1761

• Probability is that 
degree of confidence 
dictated by the 
evidence through 
Bayes’s theorem. --
E.T. Jaynes



117

Conditional Probability
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• Identity:

• Bayes’s Rule (Simple form)

• Names:

Bayesian Approach: An Identity

)(
)()|()|(

AP
BPBAPABP =

Factor gNormalizin
Prior  LikelihoodPosterior ×

=

)()|()()|( BPBAPAPABP =
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• Names:

Bayes’s Rule (Simple form)

)(
)()|()|(

AP
BPBAPABP =

Factor gNormalizin
Prior  LikelihoodPosterior ×

=
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• Law of total probability:

• More useful form of Bayes’s rule (denoting 
likelihood by L):

Bayesian Approach: 
Law of Total Probability 1

)(~)|~()()|(
)()|()|(

BPBALBPBAL
BPBALABP

+
=

)(~)|~()()|()( BPBAPBPBAPAP +=
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• Law of total probability:

• Even more useful form of Bayes’s rule:

Bayesian Approach: 
Law of Total Probability 2
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• Some form of prior probability is required!
• The prior probability is what you know before you start
• The prior can have more or less effect on the posterior, 

depending on the precision of the data
• The prior can be subjective
• The prior is the topic of unresolvable arguments

Bayesian Approach: 
The Prior Probability 1
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• The prior can be “nothing”
– even “nothing” can take several forms
– “uniform,” “flat,” or “uninformative” prior: all values of 

B are “equally probable”
– “vague” prior: all values of ln(B) are equally probable…

• The prior can be hard to nail down
– “small values of  blank are more likely than large ones”

Bayesian Approach: 
The Prior Probability 2

∑
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• The measurand or “state of nature” (e.g., count 
rate from analyte) is what we want to know

• The “evidence” is what we have observed
• The likelihood of the “evidence” given the 

measurand is what we know about the way nature 
works

• The probability of the state of nature is what we 
believed before we obtained the evidence

Philosophical Statement of Bayes’s Rule

factor gnormalizin
)measurand()measurand|evidence(

)evidence|measurand(
PL

P =
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• probability density is the probability that x lies 
in an interval between x and x + dx

• probability density is a continuous function

Probability Density
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xxxP

d   and between 
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• P’s are probability densities

• We want to determine the posterior probability 
density

Bayes’s Rule: Continuous Form

Factor gNormalizin
Prior  LikelihoodPosterior

d)()|(
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×
=
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∫
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ννν

μμμ
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PNLNP
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Use of the Posterior Probability Density
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Bayesian Approach for Blank Only

• Assume “uniform,” “uninformative,” or “flat”
prior probability density

• Assume the likelihood probability density is a 
Poisson 
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Bayesian Approach for Blank Only

• With a uniform prior, Bayes’s rule inverts the 
likelihood to yield the posterior

• μ becomes a function of N, instead of N being 
a function of μ

• Posterior probability density:

!
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N
eNP

Nμμ
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Posterior Probability Densities for μ 
(conditional on observed values)

Poisson mean, μ
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Bayesian Approach

• Assuming uniform “flat” prior probability 
distribution: any value of N is equally likely

• If N counts observed
– N is maximum likelihood, but N + 1 is expectation 

value:

– variance and standard deviation are simple:
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Ancient References for Bayesian 
N+1 Result Using a Flat Prior

Rainwater, L.J.; Wu, C.S.  Applications of Probability Theory to
Nuclear Particle Detection.  Nucleonics 1(October):60-69; 1947.

Friedlander, G.; Kennedy, J.W.; Miller, J.M.  Nuclear and 
Radiochemistry. 2nd edition. New York: John Wiley & Sons, Inc.; 
1955 & 1963.  The 1963 reference has a section on “Statistical 
Inference and Bayes’ Theorem” (pp. 178-181).

Stevenson, P.C.  Processing of Counting Data. NAS-NS-3109.  
Livermore, California: National Academy of Sciences -- National 
Research Council;  1966.

Little, R.J.A.  The Statistical Analysis of Low-Level Radioactivity in 
the Presence of Background Counts.  Health Phys.  43(5):693-703; 
1982.
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Flat Prior?
• “True” Bayesians are offended by a flat prior

– “You always know more than nothing”
• Strom’s arguments for the flat prior

– it is the best of both worlds, classical and Bayesian
• inverting the prior gives a probability distribution that’s not 

available from classical methods
– it obeys Bohr’s correspondence principle: ‘Any new 

theory must correspond to the old theory in the regime 
in which the old theory is known to be valid.’

– it’s what you use on the first experiment
– it does not require one to postulate that everything is 

drawn from the same population
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Quasi-Bayesian Statistics:
Relationships Among Observed Quantities
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• Rn is the same for 
the paired blank 
case, slightly 
different if tb≠tg

• s(Rn) is larger 
because of N+1

• MARLAP 19D.3?
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Why the N13.30 Decision Rule Fails 
at Very Low Background Rates

• an observed background count causes a decision 
of “detected” (∝ μb)

• unless a gross count is observed as well (∝ μb
2)

• independent of α !
• so, for μb < 0.3, α ′ ∝ μb – μb

2

• reason: false assumption that observed values Nb
and Nb

1/2 are good estimates of the mean and 
standard deviation of background
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What Are Alternative Decision Rules?
• “Nb + 1” Decision Rule
• Altshuler & Pasternak (A&P; 1963) / Turner (1995) Eq. 

11.68
• Keith McCroan’s generalization of A&P 

– (= ISO 11929-1:2000MARLAP)
• James H. Stapleton’s rule
• Nicholson (1963) D1 rule
• Nicholson (1963) D3 rule
• Nicholson (1963) De “exact” / Sumerling & Darby 

(1981) rule
• Bayesian approach
• Rigaud’s (2003) rule (not evaluated here)
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“Nb + 1” Decision Rule
• Bayesian inference of background rate
• Question: If one observes Nb counts, what is the 

expectation value of the background distribution 
that gave rise to this observation (see figure)?

• Bayesian Answer (uniform prior): μb = Nb + 1

• Idea: Rainwater & Wu 1947; Friedlander & Kennedy 1955; 
Friedlander et al. 1963; Stevenson 1966; Little 1982
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Altshuler & Pasternak Decision Rule
• 1963; Turner (1995) Eq. 11.68
• the confidence interval of the net activity
• equivalent to Currie’s detection level (minimum 

detectable count), when the decision level is set 
to zero

• applies to net count rate
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McCroan/MARLAP/ISO Decision Rule

• Generalization of Altshuler & Pasternak

• MARLAP July 2001 Draft; same as ISO (ISO notation):

• Only differs from A&P when count times differ
• notation problem: Strom uses kα where ISO uses k1−α
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An Obvious Argument?
• using both the background and gross sample 

measurements to estimate the background 
increases the power of the test
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Stapleton’s Decision Rule

• d is an arbitrary number, 0 < d < 1; 0.4 is good
• z is standard normal deviate for this combination 

of  Nb, Ng, tb, tg, and d
• Compare z to kα.to determine whether you’ve 

detected activity at your chosen α
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Rigaud’s Decision Rule
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Nicholson (1963) D1 Decision Rule
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Nicholson (1963) De “Exact” / 
Sumerling & Darby (1981) Decision Rule
• difference of 2 Poissons is distributed as a binomial
• Number of trials, Ntotal = Nb + Ng

• probability of success = tg/(tg+tb)
• the null hypothesis that the sample is blank is rejected if 

a blank sample would have produced a gross count as 
large or larger than the observed 100α% of the time or 
less, that is, if
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Test of Decision Rules
• Monte Carlo simulation (Strom and MacLellan 2001)
• 3,141,593 trials at each of 

– 6 values of α, 0.001 to 0.05
– 57 values of μb = ρbtb (0.01 to 50)

• MacLellan’s exact calculation (MacLellan and Strom 
1999) not possible for exact (binomial) or Stapleton’s 
tests or Nicholson’s D1 and D3 rules, because they use 
both Nb and Ng.

• Monte Carlo agrees exactly where comparison is 
possible
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Alpha = 0.02 
Paired Blank (t_b = t_g)
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Alpha = 0.01 
Paired Blank (t_b = t_g)
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Alpha = 0.005
Paired Blank (t_b = t_g)
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Alpha = 0.002 
Paired Blank (t_b = t_g)
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Alpha = 0.001 
Paired Blank (t_b = t_g)

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

0.01 0.1 1 10 100

True Background Mean, μ_b = ρ_b*t_b

Ac
tu

al
 F

al
se

 P
os

iti
ve

 R
at

e 
α

'

Currie/N13.30
Currie/N13.30(N+1)
Nicholson D1
Turner/A&P
Nicholson D3
Nich.De/Sum&Darby
McCroan/A&P
Stapleton d=0.4
alpha

Note: Nicholson D1, 
Turner/A&P, Nicholson 
D3, and McCroan/A&P 
all coincide α = 0.001.



155

Results when tb = tg, Nb < 10
• Nicholson D1, Turner/A&P, Nicholson D3, and 

McCroan/ISO all coincide when tb = tg

• Nicholson D2/Currie/N13.30/MARSSIM is poorest
• “N + 1” rule is much better, but not adequate
• Stapleton’s rule is best, followed by the quartet, 

followed by De/S&D
• No rule is good below Nb = 3; smaller α is worse
• Need further work for different count times, tb ≠ tg

• ANSI/HPS N13.30 under revision; so is MARLAP
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Background
Currie 
(1968)

Altshuler 
& 

Pasternak 
Eq15

Sumerling 
and Darby 

(1981)

Currie 
using 
(N+1)

Nicholson 
(1963)

0 0 (1) 3 5 3 5
1 3 5 6 4 6
2 4 5 7 5 7
3 5 6 7 5 7
4 5 7 8 6 8
5 6 7 8 6 8
6 6 8 9 7 9
7 7 8 9 7 9
8 7 9 10 7 10
9 7 9 10 8 10
10 8 9 10 8 10

Comparison of Decision Rules for α = 0.05

Rntg
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Software Utility under Development

• Freeware Windows 9x/2000/XP 32-bit GUI 
application

• Shows decisions for all 8 rules for any Nb, Ng, tb, tg. 
• Not for public release yet – beta available
• Handles unequal background and gross count times
• Shows the amazing diversity of the decision rules
• Shows weakness of current “N13.30” rule
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Software Utility under Development
Decision Level Calculator
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ISO 11929 Series

ISO 11929 
Determination of the detection limit and decision threshold for 
ionizing radiation measurements --  

-1:2000 Part 1: Fundamentals and application to counting measurements 
without the influence of sample treatment 

-2:2000 Part 2: Fundamentals and application to counting measurements with 
the influence of sample treatment 

-3:2000 Part 3: Fundamentals and application to counting measurements by 
high resolution gamma spectrometry, without the influence of sample 
treatment 

-4:2001 
 

Part 4: Fundamentals and application to measurements by use of 
linear-scale analogue ratemeters, without the influence of sample 
treatment 

-5:2005 Part 5: Fundamentals and applications to counting measurements on 
filters during accumulation of radioactive material 

-6:2005 Part 6: Fundamentals and applications to measurements by use of 
transient mode 

-7:2005 Part 7: Fundamentals and general applications 
-8:2005 Part 8: Fundamentals and application to unfolding of spectrometric 

measurements without the influence of sample treatment 
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Software Utility under Development
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Monte Carlo Proofs
• Crystal Ball is an add-in to Microsoft Excel

– www.decisioneering.com
• Poisson simulation
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Bayesian Approach for Blank and Gross 
Counts: Joint Likelihood 1

• Assume the likelihood probability densities 
are Poisson 

• Likelihood for Nb and Ng is a function of μb
and μg:

• Not useful because we want Nn, not Ng
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Bayesian Approach for Blank and Gross 
Counts: Joint Likelihood 2

• Likelihood for Nn is a function of Ng,  μb, and 
μn:

• Don Berry, 11/14/1997
• See Rolf Michel’s wipe test example:

http://www.kernchemie.uni-
mainz.de/downloads/saagas21/michel_2.pdf
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Bayesian Approach: Limitations
• No matter what prior you pick, people will attack you

– “Principle of Flat Priors: Use flat priors as an approximation 
when the prior precision is small in comparison with the sample 
precision” (Berry 1996, p. 354)

– “Using flat priors is conservative when the actual prior evidence
is consistent with the sample data” (Berry 1996, p. 354)

• Not simple when doing joint probability
• Bayesian results cannot be averaged, added, etc.

– an average or a sum must be recomputed from first principles



Back to the Real World…
Decision Strategies
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Coefficients of Variation Using N+1
• a better “guess”
• t denotes tracer
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Additional CVs
• CV(tracer calibration) = stracer/Atracer

• CV(tracer volume) = stv/Vtracer

• CV(aliquot volume) = saliqout vol./Valiquot

• CV(Type B system performance) = 0.03
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Uncertainty Propagation Formula
• Simple form of uncertainty propagation ignoring 

covariances:

• Combined standard uncertainty:

• Hanford uses 2×uC as a starting point for 
decisions
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Practical Decision Making: A Multi-step 
Process Using Classical Statistics

• If a bioassay result is unexpectedly > 2×uC, 
several possibilities
– if result not excessively elevated, recount sample for 

4× as long (i.e., 10,000 min for Pu α-spec at Hanford)
– if recount result > 2×uC, obtain new sample (if possible 

and meaningful) and count new sample
– if new sample result > 2×uC, decide “detected”

• Result: negligible false positive rate
• Result: minimization of false negative rate
• Moral of the story: you don’t have to decide on 

only one measurement of one sample!
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Bayesian Decision Process
• Depends on whose prior is used

– “Management Prior” or “Optimist’s Prior:” There’s no 
way that there’s activity in this sample (zero and low 
values are heavily weighted)

– “Pessimist’s Prior:” Of course there’s activity in this 
sample, and it’s bigger than you think (high values 
weighted)

– “Ignorant (or Uniform) Prior:” Anything is possible
• Bayesians can recount and resample, too!
• More information is better, but takes time and €€
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LNT: Extrapolation or Interpolation?
• The use of the linear non-threshold dose response 

model as a basis for radiation protection
– extrapolation from high doses? or 
– interpolation between high dose data to zero added 

dose data? 
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The Linear Nonthreshold (LNT) Dose-Response Model 
in Radiation Protection

After Abel González, IAEA, presented at 1999 Bridging Radiation Policy and Science

5%/Sv

Background
dose

?
Background
Incidence:

Pr
ob

ab
ili

ty
 o

f 
St

oc
ha

st
ic

 E
ffe

ct
s,

 p

Lifetime Dose, D

ΔD

Δp

Average   180 mSv
Typical     750 mSv
High        7500 mSv

{

23.6% lifetime 
fatal cancer rate

The most certain 
data point 
on the graph

High dose
observations

0
0

LNT is NOT 
extrapolating!  

It’s interpolating!



Addendum:
Software & Reference Links

Daniel J. Strom
Pacific Northwest National Laboratory

Richland, Washington USA
strom@pnl.gov        +1 (509) 375-2626

Work partially supported by the U.S. Department of Energy under 
Contract No. DE-AC06-76RLO 1830
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Units and Constants

• There is a “right” way to do things
• National Institute of Standards and 

Technology (NIST) is the authority in the USA
• http://physics.nist.gov/cuu
• NBS Special Publication 330 (1991) 

http://physics.nist.gov/Document/sp330.pdf
• NIST Special Publication 811 (1995) 

http://physics.nist.gov/Document/sp811.pdf
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Web Resources: Documents & Data
• National Nuclear Data Center 

http://www.nndc.bnl.gov/
• NIST/SEMATECH e-Handbook of Statistical 

Methods, 
http://www.itl.nist.gov/div898/handbook/, 2007 
July 15
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Web Resources: Software
• NRC’s Radiological Toolbox 

http://ordose.ornl.gov/downloads.html
• Crystal Ball is an add-in to Microsoft Excel 

www.decisioneering.com
• Strom’s Lognormal Codes: Both LOGNORM4 

and the Lognormal Fitting Utility can be 
downloaded at 
http://qecc.pnl.gov/LOGNORM4.htm

• RESRAD http://web.ead.anl.gov/resrad/home2/



Recent Papers that Were Not Mentioned 
(But May of Great Interest)
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Medical Doses: May 2007
• Amis ES, Jr., PF Butler, KE Applegate, SB Birnbaum, LF 

Brateman, JM Hevezi, FA Mettler, RL Morin, MJ Pentecost, GG 
Smith, KJ Strauss, and RK Zeman. 2007. "American College of 
Radiology white paper on radiation dose in medicine." 
J.Am.Coll.Radiol. 4(5):272-284

• Addresses huge increase in diagnostic imaging
• Proposed action plans for

• Measurements
• Referring Physicians
• Radiologists
• Technologists
• Patients
• Medical Physicists
• Vendors
• Regulatory Agencies, Accrediting Bodies, and Third-party Payers
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May, 2007: Cancer Incidence in LSS
• Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, 

Mabuchi K, Kodama K.  2007. Solid Cancer Incidence in Atomic 
Bomb Survivors: 1958–1998. Radiat. Res. 168, 1–64

• “The data were consistent with a linear dose response over the 0-
to 2-Gy range, while there was some flattening of the dose 
response at higher doses. 

• “Furthermore, there is a statistically significant dose response 
when analyses were limited to cohort members with doses of 0.15 
Gy or less.

• “Significant radiation-associated increases in risk were seen for 
most sites, including oral cavity, esophagus, stomach, colon, liver, 
lung, non-melanoma skin, breast, ovary, bladder, nervous system 
and thyroid.”
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Preston et al. 2007: LSS CA Incidence
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Genetic Susceptibility to Radiation in a 
Human Population (April 2007)

• Flint-Richter P and S Sadetzki. 2007. "Genetic 
predisposition for the development of radiation-
associated meningioma: an epidemiological 
study." Lancet Oncol. 8(5):403-410

• Hall EJ. 2007. "Cancer caused by x-rays--a 
random event?" Lancet Oncol. 8(5):369-370.
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Flint-Richter and Sadetzki (2007)
• Ionising radiation is an established risk factor for meningioma, 

yet less than 1% of irradiated individuals develop this tumour. 
Familial aggregation of meningioma is rare. We aimed to assess 
whether genetic factors can modify the risk for meningioma 
formation after the initiating eff ect of radiation, by comparison of 
the frequency of meningiomas in families that included irradiated 
and unirradiated siblings.

• This study was based on a larger epidemiological, genetic case-
control study, and included 525 families that were divided 
according to irradiation and disease status of each of the family’s 
index participant: 160 had radiation-associated meningioma 
(RAM); 145 were irradiated and did not develop meningioma; 85 
had meningioma with no previous history of irradiation; and 135 
were unirradiated and did not develop meningioma. Data were 
collected by questionnaires.
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• We found additional first-degree relatives with meningioma in 17 

families (11%) in the RAM group, whereas only between one and 
two such families (1%) were found in the other groups 
(p<0·0001). All meningiomas seen in the families of the RAM 
group were in irradiated participants. Also, 22 families (10%) in 
the RAM group had members with cancers in irradiated sites 
(including head, neck, and chest) compared with 9 (5%) of 
irradiated controls (p=0·04).

• This dataset of families, which included irradiated and 
unirradiated, and also affected and unaffected family members, 
created a natural experiment. Our results support the idea that 
genetic susceptibility increases the risk of developing 
meningioma after exposure to radiation. Further studies are 
needed to identify the specific genes involved in this familial 
sensitivity to ionising radiation. DNA repair and cell-cycle 
control genes, such as the ataxia-telangiectasia gene, could be 
plausible candidates for investigation.
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