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The Problem
• Many people, including health physicists, often 

use the term “dosimetry” for any process that 
produces a number in “dose-like” units
– roentgens, rads, rems, coulombs per kilogram, grays, 

or sieverts
• Not all such “doses” are created equal in terms of

– their basis in measurements and/or observations
– how well they represent deposition of ionizing 

radiation energy in living tissue
– how well we know their value (uncertainty)

• So, rem is not a rem is not a rem…
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Outline
• Why we [are forced to] do dose reconstruction
• What we should call the results of uncertain dose 

reconstructions
– Dosimetry: Uncertainty is dominated by what we measure
– Dosinference: Uncertainty is dominated by what we don’t 

measure
• consensus or expert inferential models
• consensus or expert parameters of inferential models

– Doswaggery: Uncertainty is dominated by what we make up 
(leaps of inference about what might have been)

• Examples of uncertain dose reconstructions
– Radiographic examinations
– Doses from inhalation intakes, including radon
– Occupational exposure to neutrons

• Who are we kidding?
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Purposes of Dose Reconstruction
• regulatory compliance
• epidemiologic research
• litigation

– occupational exposures
– environmental exposures including fallout
– medical exposures

• [political forces have compelled us to engage in 
the] determination of probability of causation for 
cancers suspected of being caused by workplace 
exposure [subject to political rules]



Dosimetry
(Measuring Dose)
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Dosimetry

• “dose” + metry
• root is metron (Greek: to measure)

• current usage: any dose number is presumed to be 
the result of “dosimetry”

• thesis
• If measurement or observation is the dominant 

activity, and 
• uncertainties in results are predominantly due to 

measurement uncertainty, 
use the word “dosimetry.” Otherwise, maybe new terms 

would be more appropriate!
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Measuring the Quantity of Radiation
• observation of biological 

response (e.g., erythema, 
chromosome aberrations)

• cloud chambers
• film blackening
• appearance or sound of 

bubbles in superheated 
liquids

• analysis of activation or 
fission product yield

• scintillations
• Čerenkov radiation (light)
• thermoluminescence (TL) or 

optically stimulated 
luminescence (OSL)

• observation of radiation damage 
(e.g., chemically etching damage 
in film, radiochromic changes, 
thermal and electrical 
conductivity changes, ESR in 
teeth and bones)

• chemical changes as quantitated 
by light absorption or nuclear 
magnetic resonance

• measurement of electric charge 
or current in solids (Ge and Si) 
or gases such as xenon, P10, or 
air, and

• calorimetry
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Measuring Radioactive Material
• Measurements

– radiometry (activity)
– gravimetry (mass)
– number of atoms (mass spectrometry)
– chemical measures (moles)
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Dosimetry for External Irradiation
• most measurements are outside of the human body
• want to know dose inside or at surface
• external irradiation: few inferential steps

• absorption
• albedo
• spectrum changes
• based on types, energies, directions of incident radiation
• assumptions about person wearing dosimeter
• neutrons still a challenge

• irradiation following intake or ontake of radioactive 
material
• surgical implantation of dosimeters? no.
• inference



Dosinference
(Inferring Dose)
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Dosinference

• blend of “dose” + “inference” (Strom 2002)

• uncertainties associated with inferential steps dwarf 
uncertainties of measurement steps
• exceptions: 3H and alkali metals, e.g., 137Cs

• measurements tend to be of dose-rate like quantities, 
rather than dose-like quantities
• rate of photon emission from regions of body (in vivo counting)
• count rate or numbers of atoms (TIMS, ICP-MS) in excreta
• count rates from air samples
• exception: chromosome aberrations

• infer activity (and its uncertainty) in organs and tissues 
from measurements and biokinetic models



Example: Committed Dose from 
Inhalation of Radionuclides
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What’s Uncertain When Inferring Intake?
• Circumstances

– time or time course of intake
– route(s)

• Material characteristics
– radionuclide mixture
– particle size and shape
– chemical form(s) and transportability (S, M, F, or real)

• Measurements
– counting or measurement uncertainty
– 24-h sample? simulated? adulterated or contaminated?

• Biological variability
– availability and validity of model(s) 
– systematic differences between individual and models
– among bioassay samples or measurements

• Interpretation
– interference from environmental exposures
– prior intakes



Catalog of Radiation Quantities 
Used in Dose Reconstruction that 

May Be Uncertain
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Types of Radiation Quantities
• energy
• dose-like quantities (energy/mass)
• dose-rate-like quantities (power/mass)
• interaction of radiation with material (various)
• biology or risk (various)
• other
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Groupings of Radiation Quantities

Indirectly 
Ionizing 
Radiation

Directly 
Ionizing 
Radiation

kerma
[rate]

cema [rate]

Πηοτονσ

exposure [rate]

μ/ρ, μtr/ρ, 
μen/ρ

Radioactive 
Material

decay 
constant λ

activity*number of transitions

Radon & 
Progeny

potential α
energy 
concentration

potential α
energy 
exposure

equilibrium factor

equilibrium 
equivalent 
concentration

potential α
energy

equilibrium 
equivalent 
exposure

absorbed dose [rate]

Neutrons

air kerma 
rate constant

equivalent dose [rate]
effective dose 
[equivalent] [rate]

S/ρ,
Scol/ρ, Srad/ρ

specific 
activity

specific 
energy

energy deposit, 
energy imparted energy

dose-like quantity

dose-rate-like quantity

interaction of radiation 
with material

biology or risk

other

cross section

*“intake” is implicitly 
“dose-like” due to retention

radiation chemical yield

fluence, energy fluence [rate]

linear energy 
transfer, 
lineal energy

hT(τ)wT

Biology or Risk

energy per 
ion pair

f1

SEE AF

Q, wR

activity 
concentration

{F, M, S}

unattached 
fraction

retained 
quantity

fraction 
deposited

particle 
size

e(τ)

IRF α, β, recoils
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Non-Measured or Rarely-Measured Parameters 
Used in Dosinference Following Inhalation

• particle size distribution
• respiratory tract clearance type: F, M, S or specific
• fractions deposited in various parts of the individual’s 

respiratory tract
• individual’s intake or retained quantity
• individual’s number of transitions, U
• individual’s intake retention fraction, IRF
• individual’s uptake fraction from GI tract, f1
• individual’s absorbed fraction, AF
• individual’s organ masses
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Other Inputs to Dosinference that May or 
May Not Be Measured

• knowledge or guesses of time course and route(s) of 
intake

• identity of all radionuclides and proportions in a mixture
• chemical and physical form for ingestion, injection, 

wound, or dermal absorption from an ontake
• true daily excretion rate for in vitro bioassay (non 24-h 

samples)
• biokinetic models

• Reference Man usually used, not individual data
• individual chest wall thickness and 40K corrections
• site-specific solubility, e.g., Y-12’s “Class Q” uranium
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Air Sampling for Dosinference
• activity concentration, χ = A/V (Bq m−3)
• personal (breathing zone, BZ) air samplers

– lapel
– fixed head for glove box locations

• general area (GA) air samplers
• presumed to be representative of what worker inhaled
• may be way off for high-specific activity aerosols where 

one particle can be a significant fraction of an ALI 
(Birchall et al. 1991)

• For average inhalation exposures to high specific 
activity 238PuO2 particles (10 g/cm3, 5 μm AMAD, 
lognormal distribution GSD = 2.5) of 1, 2, 4, and 8 
DAC-hours, ITRI's Monte Carlo analysis showed that 
most folks have zero intake, while some will exceed 
2000 DAC hours (Scott et al. 1997)
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Inhalation Exposure of Individuals

• The exposure Y (Bq h m−3) over a period of time T (h) is

• Y is commonly normalized to the derived air concentration, DAC

• inhalation exposures often given in DAC-h

∫=
T

ttTY
0

d )()( χ

∫=
T

i

i
i t

DAC
tTY

0
 norm, d )()( χ
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Respiratory Protection
• Assigned Protection Factor, APF

• APF is determined by regulator, e.g., 10 CFR 20 Appendix A
– actual PF for workers may be very different!

• the adjusted inhalation exposure becomes

• adjusted inhalation exposures often given in DAC-h
• If stochastic DACs are used, 1 DAC-h is a surrogate for 2.5 mrem 

of HE,50, so DAC-hours from different radionuclides can be added

,
respirator inside

respirator outside

χ
χ

=APF

∫=
T

i

i
i t

DAC
t

APF
TY

0
 adjusted, norm, d )(1)( χ
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Additional Non-measured or Rarely-measured 
Parameters in Dosinference from Air Monitoring

• individual’s breathing rate
• individual’s nose or mouth breathing
• individual’s respiratory protection factor, PF
• particle size distribution inside the respirator
• representativeness of the air sample: the one thing we are 

certain of is that the air that was sampled was not the air 
that was breathed!

• Note that there is no NVLAP or DOELAP program for 
accreditation, quality assurance, and quality control for 
air sampling measurements that are used to compute a 
‘dose of record.’
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Dosinference from Radon Progeny
• short-lived decay products of radon & thoron

• radon concentration
• equilibrium factor
• stay time and diurnal variations
• breathing rate (level of exertion)
• nose breathing 
• smoking
• unattached fraction
• particle size (for attached fraction)
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Dosinference from Radon Progeny
• ICRP (1995) “dose conversion convention”

• 5 mSv/WLM rather than 12.5, based on epidemiology
• You’re lucky to get within a factor of 2



Example: Reconstructing 
Occupational Neutron Doses
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Imputed Values
• to “impute” has taken the meaning to “make up a 

number”
• Reissland (1982) used the term “notional dose” for what today 

is termed an “imputed dose”
• lost or damaged external dosimeter, spoiled bioassay or 

air sample
• imputation commonly done for regulatory compliance

• interview worker & colleagues, dose rates, time-in-area
• average preceding and subsequent dosimeter results

• can be very accurate 
• CARI-6 for air travel 
http://www.cami.jccbi.gov/AAM-600/610/600Radio.html

• can be done for “less than detectable” results
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Uncertainty Components for Reconstructing 
Occupational Doses (Hp(10)) from Neutrons - 1

• Offsite dose not measured or records not transferred
• Offsite dose records transferred, unknown technology
• [Neutrons NOT monitored] AND [Individual potentially 

exposed]
• Dosimetry Technology Used (ISO Type B)
• Known/Unknown Calibration Source
• Calibration Spectrum
• Calibration Source Strength
• Calibration Room Scatter
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Uncertainty Components for Reconstructing 
Occupational Doses (Hp(10)) from Neutrons - 2

• Fading/Deterioration
• QC on manufacturing, processing, and readout
• Units
• Conversion Factors
• Worker Spectrum
• Representativeness
• Uniformity of Irradiation
• Neutron Direction with respect to Worker
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Uncertainty Components for Reconstructing 
Occupational Doses (Hp(10)) from Neutrons - 3

• Response to Interfering Radiations
• Similarity of Individual to Phantom
• Left Censoring
• Lost/Damaged Dosimeter(s)
• Dosimetry Technology Used (ISO Type A)
• Fraction of Time Dosimeters Worn
• Data Quality
• Imputation
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Uncertainties
• Additive

– Example: standard deviation (SD)
• Multiplicative

– Example: geometric standard deviation (GSD)
– National Academy of Sciences (NAS) 1989 

methodology
– Alternative methodology

• Need for both additive and multiplicative uncertainties
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Uncertainty
• Not measurand variability, bias, precision, or error, but 

may be affected by these
• Additive

– Example: standard deviation (SD)
• Multiplicative

– Example: geometric standard deviation (GSD)
– National Academy of Sciences (NAS) 1989 

methodology
– Alternative methodology

• Need for both additive and multiplicative uncertainties 
for neutron dose reconstruction
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Additive Uncertainties
• Familiar to most people
• Normal distribution characterized by 

– a standard deviation (SD)

– mean = median = mode
• Coefficient of variation, CV = SD/mean
• Interval nonnegative when CV is small, e.g., < 0.2
• When CV > 0.2, negative values and zero become 

increasingly probable
– the reciprocal of a Normal distribution encompassing zero and 

negative values is intractable (it has no mean)
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Multiplicative Uncertainties
• Not familiar to most people
• Lognormal distribution characterized by

– a geometric standard deviation (GSD)

– mean > median > mode
• Contrasting an SD with a GSD

– SD: a “plus or minus” value
• ~68% of values between mean − SD and mean + SD
• ~95% of values between mean − 1.96 SD and mean + 1.96 SD
• can include negative numbers

– GSD: a “times or divided by” value
• ~68% of values between median ÷ GSD and median × GSD
• ~95% of values between median ÷ GSD1.96 and median × GSD1.96

• 2-parameter lognormal cannot include negative numbers
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For Each Uncertain Component,
• ISO Type A or B uncertainty?
• Effect on Individual's Dose

– R = random or S = systematic
• If S, Is Bias Factor High or Low?
• Effect on Population's Dose

– R = random or S = systematic
• If S, Is Bias Factor High or Low?
• Does uncertainty depend on 

dosimetry technology (Site, 
Time)?

• What action do we take?
– Impute a dose or eliminate subject
– None possible
– Only in specific cases
– Assign fixed GSD based on research
– No information
– Assign GSD based on extremes
– Insufficient information
– 2-fold variation: GSD = 1.19 ~ 2(1/4)

• Assign a Confidence Code 
• Compute

– Independent Factors GSD
– NTA GSD
– TLND GSD
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Create a Lognormal 
Uncertainty Distribution U

• DBCE is the “bias-corrected estimate” of dose

• B′ is the multiplicative bias-correction factor

• U is the lognormal uncertainty distribution whose mean = 1

• If the mean of U is 1, the mean of DBCE,U is unchanged by 
applying the uncertainty distribution

DosePr
ob

ab
ili

ty
 D

en
si

ty

DM

B'

DBCE,U = U B' DM

DBCE = B' DM

DBCE
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Result: 
Asymmetric K-factors Around the Mean of B′
• K-factors are different above and below the mean

• The 2.5%ile and 97.5%ile values of B' are

)2/exp( 296.1
Mean Above 96.1 σ−= GSDK

)2/exp( 296.1
Mean Below 96.1 σ+= GSDK

and 
Mean Below 96.1

2.5%ile K
BB

′
=′

Mean Above 96.197.5%ile KBB ×′=′
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Overall Hp(10) Geometric Standard Deviations

8.2772.83KBelow Mean

4.222.70KAbove Mean

2.473.85Combined GSD
1.282.802.39GSD Component

TLND 
GSD

NTA 
GSD

Independent 
Factors GSD
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An Additive Factor Is Also Needed
• Problem: if DM is zero, DBCE,U will be zero

– NTA film often produced zeroes due to fading
– even without fading, minimum detectable dose MDD ~ 0.5 mSv

• Solution: create a second uncertain probability distribution ΔU that 
has a positive mean

• Ideally, ΔU would be the distribution of the measurand that leads 
to recorded results of zero
– normal, triangular, rectangular, or lognormal distributions might be 

appropriate
– a point estimate may also be used
– mean might be chosen as ½ the minimum recorded dose
– better methods, e.g., Strom (1986), Mitchell (1997)

( ) BDUD ′⋅Δ+⋅=Δ UM U,BCE,



Doswaggery:
(Making Up Dose)
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Doswaggery
• blend of “dose” + “swag” (Strom 2002)

• root is acronym for scientific wild assumption guess (US 
popular usage)

• examples of swags
• predicting the weather two weeks in advance
• predicting the value of the stock market in a year

• uncertainties in assumptions dwarf even the uncertainties 
in the inferential steps, much less the uncertainties in the 
measurements

• may not rely on measurement at all, or may rely on 
measurements only tenuously associated with individual 
for whom a dose is being inferred
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Doswaggery to Impute Doses
• not all imputed doses are doswags

• production lines
• radiology department with steady caseload
• careful dose reconstructions such as RERF DS02

• examples of doswaggery:
• assigning historical uranium miners potential alpha energy 

exposures (J h m–3 or WLM) based on measurements in 
similar mines

• historical dose reconstruction for litigation in U mining, 
milling, refining in absence of any concurrent workplace 
measurements

• some projections of future (50-year “committed”) doses
• population doses from high level waste repositories
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Uncertainty Is Not Necessarily Error
• “The result of a measurement (after correction) can 

unknowably be very close to the value of the measurand 
(and hence have a negligible error) even though it may 
have a large uncertainty.  Thus the uncertainty of the 
result of a measurement should not be confused with the 
remaining unknown error.” – ISO (1995)

• a doswag may be accurate but is highly uncertain
• long-range weather forecasts are sometimes correct!
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Word Choice Based on Uncertainty

1.01 to 2~~Dosimetry

2 to 20~Dosinference

>20~Doswaggery

Imputed 
Data

Model 
ParametersModels

Measure-
ments

Ratio of
97.5%ile

to 2.5%ile

of Inferred 
Dose

Typical Dominant Uncertainty

Term

denotes important; denotes very important; ~ relatively trivial
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Calling a Spade a Spade…
• maybe it’s time to choose different words when 

the dose in question is measured, inferred, or 
essentially assumed

• dosimetry when measurement uncertainty 
predominates

• dosinference when model parameter uncertainty 
predominates

• doswaggery when assumption or imputed value 
uncertainty predominates
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Uncertainty, Variability, and Bias
• Uncertainty: you’re not too sure of the value of the 

measurand
• Variability:

– intra-subject variability: day-to-day differences
– inter-subject variability: systematic differences between 

individuals (e.g., height)

• Bias:
– value is systematically wrong
– individual differs systematically from Reference Man

• Error: a mistake, a blunder
– don’t use the word “error” in place of uncertainty, variability, 

or bias
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Measurements Used for Assessment of Doses 
from Intakes of Radioactive Material: Bioassay

• in vitro assessment of internal radioactivity
– nasal swipes or smears: immediately after a suspected or 

verified accident
– smears of skin or wash water
– urinalysis
– fecal analysis
– analysis of other tissue material
– analysis of swipe sample or air sample for particle size, 

solubility, and isotopic composition
• in vivo assessment of internal radioactivity

– direct monitoring of skin
– direct monitoring of wound
– chest (“lung”) counting
– whole body counting
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Two Ways to Determine Intake I
• use bioassay result and knowledge of time of intake

– intake retention fraction (IRF)
• for a given “bioassay compartment,” e.g., urine, feces, lung retention
• as a function of time since intake tI (Potter 2002)

• use air sample, stay time, breathing rate, and assigned 
protection factor

APF
tI

-- )h m2.1()hours()m Bq((Bq)
133χ

=

)(
(Bq)

ItFRI
tCompartmenBioassayinActivityI =
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From Intake to 
Effective Dose: IRF and e

• multiply I by effective dose per unit intake factor 
e(τ) (IAEA SS 115 or ICRP 68, 71, etc.)

• e(τ) depends on
– route of intake
– particle size (inhalation only)
– chemical form
– age
– person (worker or public)

)50()50( eIE =
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Dosinference Example: 
Bioassay to Effective Dose

• routine 24-hour urine sample: 0.022 + 0.005 dpm of 239+240Pu 
• DL = 0.010 dpm
• Pu contamination near where he was working  200 days before 
• Assume acute inhalation intake, 5µm AMAD Type S particles
• What E(50) would you assign to the worker? 
Answer
• IRFurine(200 d) = 1.61E-7 (Potter 2002 p. 772)
• e(50), 5µm = 8.3E-6 Sv/Bq (workers; IAEA SS 115 p. 153)
• Convert dpm to Bq (1 dpm = 1/60 Bq)
• 24-h urine excretion = (3.67 + 0.83)E-4 Bq
• (24-h Urine Bioassay Quantity) ÷ IRF = 2280 + 580 Bq
• I × e = E(50) = 0.0189 + 0.0043 Sv = 18.9 + 4.3 mSv
• uncertainty is doubtless much larger than the counting uncertainty



Potential Doswaggery Example: 
Radiation “Dose Reconstruction”

from Medical X-Rays
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X-Ray Dose Reconstruction
• Reconstructing doses from past radiographic and 

fluoroscopic procedures may start from non-
radiological assumptions and measurements

• Dependence of dose (that would have been causal to 
various cancers) on various parameters

• Degree of knowledge of those parameters
– what’s known and what’s assumed
– uncertainty in assumptions made in absence of evidence

• Postulated nature of uncertainty parameters
– ISO GEUM Type A or Type B? 
– Random or systematic for an individual

• The Future: Monte Carlo uncertainty propagation
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Organ or Tissue Dose due to 
Diagnostic X-ray Procedures Depends on

• Characteristics of the X-ray machine
– Inherent & added filtration -- Uncertainty Range: ×4 at 100 kVp,

×10 at 45 kVp
– Waveform (type of rectification): ×1.7
– Type of target (e.g., tungsten): (74/42) = 1.76 (usu. ×1)
– Condition of the target: ×1.5

• “Technic”
– Source-to-image distance (SID), source-to-skin distance (SSD): 

×2
– Accelerating potential (kilovolts peak): ∝(kVp)2.0-2.5; ×2
– Charge used in each exposure, expressed as the product of 

exposure time(s) and tube current (mA), in mAs (or mC): 
∝(mAs)1; see below

• Projection, e.g., anterior-posterior (AP) lumbar spine
• Degree to which the beam was collimated: ×1,000
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• Organs may be 
– in the beam
– partially in the beam
– near the beam
– far from the beam

K
S TY

Slight changes in 
collimation, positioning, 
and patient size can make 
huge changes in organ or 
tissue dose

Image receptorGrid

Focal 
spot

One site had a no 
collimation in 1970, 
resulting in a 99 cm 
circle at 178 cm SID

Can affect dose by a 
factor of 1 to 1,000
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Organ or Tissue Dose due to 
Diagnostic X-ray Procedures Depends on

• Projection, e.g., anterior-posterior (AP) lumbar spine
• Degree to which the beam was collimated: ×1,000
• Actual or probable number of retakes: ×2
• Frequency of examination, e.g., annually : ×3
• Method used to assign doses: ×3 or more

– Rosenstein 1976 (incarnated as ICRP Pub. 34, 1982)
– Rosenstein 1988 http://www.fda.gov/cdrh/ohip/organdose.html

– NRPB’s SR-262 http://www.nrpb.org/publications/software/sr262.htm#r262

– Finland’s PCXMC http://www.stuk.fi/pcxmc/
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Variation of X-ray Output with Accelerating Potential
• Increases at kVp>2 (Kramers 1923)
• Varies by more than a factor of 2 among authors

NCRP33
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Effect of Inherent and Added Filtration
• More filtration: radiation is more penetrating
• Less filtration: radiation is less penetrating
• What is constant?

– equivalent quality 
images; or

– a fixed, known 
technique 
(kVp, mAs, SID)
?
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Effect of Inherent and Added Filtration
• More filtration: radiation is more penetrating

– the ESE is lower for a given image quality
– deeper tissues get a larger fraction of ESE
– distal tissues get a larger fraction of ESE

• Less filtration: radiation is less penetrating
– the ESE is higher for a given image quality
– tissues in primary beam, especially those closer to the target, get higher 

doses than they would with more filtration
• Therefore, for equivalent quality images produced using an 

unknown technique, assuming 
– more filtration yields larger doses to distal tissues
– less filtration yields larger doses to tissues in primary beam

• For a fixed, known technique (kVp, mAs, SID), assuming 
– more filtration results in lower doses to tissues in primary beam and higher 

doses to distal tissues
• Which assumption yields the highest dose per film depends on 

where the target tissue is!
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Variation in X-ray Output with Accelerating 
Potential and Total Filtration

• Filtration changes output by ×4 (100 kVp), ×10 (45 kVp)

PHS 1519, 1964
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The Choice of Techniques Depends on
• Patient characteristics (i.e., thickness of the part X-rayed): ×3.5 

for lumbar spine (LAT) with 36” SID
• The projection: You don’t even get started without this!

– Chest, Lumbar Spine, etc.
– AP, LAT, PA, etc.

• Whether a Potter-Bucky moving grid was used: ×6
– if so, the type of grid (focused or unfocused, grid ratio)

• The type of film or image receptor used
– conventional radiography v. photofluorography: ×100
– Film and screen combination (Bates 1969)

• For a given screen, doses to produce O.D. = 1.0 range over a factor of 
3.4, CV = 34%, GSD = 1.41

• If screen is unknown, doses range over a factor of 15.2, CV = 67%, 
GSD = 2.04

• How the film was developed: ×2 or more
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Effect of Patient Thickness
• More radiation and more penetrating radiation is needed 

to produce a quality image
– generally, higher kVp is used

1 s, 200 mA, 200 mAs, Large focal spot, 40" SID, Bucky in
kVp = 2*cm + 24
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Effect of Patient Thickness
• Entrance skin exposure (ESE) can increase rapidly with thickness

Lateral Lumbar Spine Exam
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– For a given source-
to-image distance 
(SID), the skin of a 
thicker patient is 
closer to the source

– This is just 
geometry; it ignores 
the need for more 
radiation!

– A factor of 3.5 for 
lumbar spine (LAT) 
with 36” SID
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Effect of Collimation - 1
• This effect can be truly enormous

– Tissues at edge of beam
– Tissues partially in primary beam
– Tissues not listed in old method

• EEOICPA tissues do not correspond to
– Rosenstein 1988 (CDRH web site)
– U.K. National Radiological Protection Board (NRPB) 

SR-262
– Finland’s STUK PCXMC
– Rosenstein 1976 (ICRP 34)
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Cancers for Which Doses Might Be Needed:
(This Doesn’t Look Like ICRP’s List!)

• Acute lymphoid leukemia
• All digestive
• All male genitalia
• All male genitalia AND 

All urinary organs (if 
male)

• Bladder
• Bone
• Breast
• Colon
• Esophagus
• Eye
• Female genitalia, less 

Ovary
• Female genitalia, less 

Ovary AND Ovary
• Female genitalia less 

Ovary And Ovary AND 
All urinary organs (if 
female)

• Nervous System
• Non-melanoma 

skin-Basal cell
• Oral cavity and pharynx
• Other and ill-defined 

sites
• Other endocrine glands
• Other Respiratory
• Ovary
• Pancreas
• Rectum
• Stomach
• Thyroid
• Thyroid AND Other 

endocrine glands
• Urinary organs less 

bladder

Adapted from Table 4, pp. 47-52, NIOSH-IREP Technical Documentation, June 18, 2002

• Gall bladder
• Leukemia, less CLL
• Leukemia, less CLL AND 

Acute lymphoid leukemia, 
AND Acute myeloid leukemia

• Leukemia, less CLL AND 
Acute myeloid leukemia

• Liver
• Lung
• Lung AND Other respiratory
• Lymphoma and multiple 

myeloma
• Malignant melanoma
• Malignant melanoma AND 

non-melanoma skin
• Malignant melanoma AND 

Non-melanoma skin-Basal cell
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Effect of Collimation - 2
• This effect can be truly enormous (×1000) for tissues that 

were in the primary beam but were assumed not to be!
• Example at one facility in 1970

– circular cone, not rectangular
– measured beam diameter = 99 cm at 178 cm SID
– a 36 cm × 43 cm (14” × 17”) film requires 56 cm
– 99 cm includes head, gonads, and all of abdomen

• Standard methods of dose assessment are worthless for 
this collimation
– Rosenstein 1976 (=ICRP Pub. 34)
– Rosenstein 1986
– NRPB SR 262

• Only STUK’s PCXMC can handle this
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Effect of Waveform
• For single-pulse (full-wave or half-

wave rectified) x-ray generators, 
most of the dose comes in sharp 
pulses due to kVp2 an absorption 
of low-energy photons

• Small changes in kVp make a 
disproportionate change in 
radiation -20
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Film and Screen Combination; Film Quality 
and Developing; Anode Aging

• Film and screen combination (Bates 1969)
– For a given screen, doses to produce O.D. = 1.0 range over a factor of 3.4, 

CV = 34%, GSD = 1.41
– If screen is unknown, doses range over a factor of 15.2, CV = 67%, GSD 

= 2.04

• Film Quality
– Poor quality has caused high doses
– Exhausted chemicals cause high doses

• Anode aging: lower output, harder spectrum (Sunde 2004)
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What Is Known and What Is Assumed
• Measurements can dramatically reduce 

uncertainty
– Measurements don’t apply to individuals
– Individual variability still remains

• The existence of a usable film places limits on 
some parameters
– doesn’t tell about collimation, filtration, film/screen, 

retakes, patient thickness
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X-Ray Dose Reconstruction Conclusions
• IF you know

– trustworthy measurements were made
– technics
– film, screen, developer, collimation, filtration
– patient thickness
– projections, # of retakes

you can limit some of the uncertainty
• IF you don’t, it’s doswaggery
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Conclusions - 1
• What process produces a “dose” number?

– Dosimetry: Uncertainty is dominated by what we 
measure

– Dosinference: Uncertainty is dominated by what we 
don’t measure

• consensus or expert inferential models
• consensus or expert parameters of inferential models

– Doswaggery: Uncertainty is dominated by what we 
make up (leaps of inference about what might have 
been)



70

Word Choice Based on Uncertainty

1.01 to 2Dosimetry
2 to 20Dosinference

>20Doswaggery

Ratio of 97.5%ile to 2.5%ile 

of Inferred DoseTerm
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Conclusions - 2
• Dosinference for Intakes

– measurement: in vivo or in vitro bioassay, air 
monitoring

– models and model parameters
• Dosinference (TNLD) or doswaggery (NTA film 

or job titles) for occupational neutron dose 
reconstruction

• Doswaggery for diagnostic x-ray dose 
reconstruction for tissues not imaged on the film

• Not all “doses” result from dosimetry!
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