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Outline
• The problem of terminology
• The two “counting problems”
• A discussion of “total propagated uncertainty”
• Individual sample decision levels and the “Great Leap of Inference”
• Compare measurements with decision threshold, not detection level
• Decision strategies (Bayesian and classical)
• Consequences of wrong decisions: do we need better decision rules?
• Detection capabilities
• Classification and misclassification
• Report and record uncensored, un-rounded measurements results with 

uncertainties
• Utility and limitations of averaging results of many samples
• Probabilistic blank and environmental background subtraction
• Dosimetry, dosinference, and doswaggery
• Non-Bayesian methods of uncertainty evaluation in modeling
• References
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NIST Technical 
Note 1297 (1994)
• Same as 1995 ISO Guide to 

the Expression of  
Uncertainty in Measurement 
(GEUM)

• Doesn’t cover 
• the use of measurements in 

models that have uncertain
• assumptions
• parameters
• form

• representativeness (e.g., of a 
breathing-zone air sample)

http://physics.nist.gov/cuu/pdf/tn1297.pdf
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GEUM Terminology 1
• measurand: the unknown value of a physical quantity 

representing the “true state of Nature”
• measured result: result of a measurement made of a 

measurand
• error: the [unknowable] difference between a 

measured result the actual value of the measurand
• uncertainty of measurement: a “parameter, 

associated with the result of a measurement, that 
characterizes the dispersion of the values that could 
reasonably be attributed to the measureand.”
• a bound for the likely size of the measurement error

• spurious errors include blunders, mistakes
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GEUM Terminology 2
• Uncertainty that is evaluated by the statistical 

analysis of series of observations is called a 
“Type A” uncertainty evaluation.

• Uncertainty that is evaluated by means other
than the statistical analysis of a series of 
observations is called a “Type B” uncertainty 
evaluation.

• This presentation focuses on Type A uncertainties.
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Terms 3: Error, Uncertainty, Variability
• “The difference between error and uncertainty should 

always be borne in mind.” 
• “For example, the result of a measurement after 

correction can unknowably be very close to the 
unknown value of the measurand, and thus have 
negligible error, even though it may have a large 
uncertainty.”

• “Error bars?” No! “Uncertainty bars” is what we should 
say

• Variability is the range of values for different 
individuals in a population
• e.g., height, weight, metabolism
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Terms 4: Random and Systematic “Errors”

• Whatever happened to random and systematic “errors”?
• GEUM: There is not always a simple correspondence 

between the classification of uncertainty components 
into categories A and B and the commonly used 
classification of uncertainty components as “random” 
and “systematic.” 

• The nature of an uncertainty component is conditioned 
by the use made of the corresponding quantity, that is, 
on how that quantity appears in the mathematical model 
that describes the measurement process. 

• When the corresponding quantity is used in a different 
way, a "random" component may become a "systematic“ 
component and vice versa. 
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Terminology 5
• Thus the terms "random uncertainty" and "systematic 

uncertainty" can be misleading when generally applied. 
• An alternative nomenclature that might be used is 

"component of uncertainty arising from a random 
effect," "component of uncertainty arising from a 
systematic effect," where a random effect is one that 
gives rise to a possible random error in the current 
measurement process and a systematic effect is one that 
gives rise to a possible systematic error in the current 
measurement process. In principle, an uncertainty 
component arising from a systematic effect may in some 
cases be evaluated by method A while in other cases by 
method B (see subsection 2.2), as may be an uncertainty 
component arising from a random effect. 
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Type A Uncertainty Evaluation
• represented by a statistically estimated standard 

deviation

• associated number of degrees of freedom = vi. 
• the standard uncertainty is ui = si. 

2
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Type B Uncertainty Evaluation
• represented by a quantity uj

• Since the quantity uj
2 is treated like a variance and uj

like a standard deviation, for such a component the 
standard uncertainty is simply uj.
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Statistical Criteria for Decision-Making
• a priori determinations of detection capabilities
• a posteriori decisions of whether radioactivity 

has been detected in a particular sample
• total propagated uncertainty in measurement 

results
• sampling strategies
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Most Difficult: Alpha-Emitters

• problems are most difficult for alpha-emitting 
radionuclides
• 230Th (found in uranium mill tailings)
• Pu (from reprocessing of irradiated nuclear fuel)

• expense of sampling and laboratory analysis
• α-spectrometry
• mass spectrometry 

• Inductively Coupled Plasma Mass Spectrometry (ICPMS)
• Thermal Ionization Mass Spectrometry (TIMS)

• expense and consequences of incorrect decisions
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Uncertainty Propagation Formula
• Combined standard uncertainty

• Derived from first-order Taylor series expansion
• Not accurate for large uncertainties (e.g., broad 

lognormal distributions)
• Covariances usually unknown and ignored
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Total Propagated Uncertainty for A 
Radiochemical Measurement

• Includes
• counting uncertainty for analyte (A)
• counting uncertainty for tracer (includes 

radiochemical recovery and counting yield) (A)
• uncertainty in tracer calibration (B)
• uncertainty in tracer volume (A)
• uncertainty in aliquot volume (B)
• “system” uncertainty (B) ≈ 3%

• We return to TPU later



The Two Aspects of 
the Counting Problem
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The Two Counting Problems
• Radioactive decay is a Bernoulli process described by 

a binomial or Poisson distribution
• The “forward problem”

• from properties of the process, we predict the distribution of 
counting results (mean, standard deviation (SD))

• measurand → distribution of possible observations
• The “reverse problem”

• measure a counting result
• from the counting result, we infer the parameters of the 

underlying binomial or Poisson distribution (mean, SD)
see, e.g., Rainwater and Wu (1947)

• this is the problem we’re really interested in!
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Two Kinds of Statistics
• Classical statistics 

• does the forward problem well
• does not really do the reverse problem

• Bayesian statistics does the reverse problem 
using 
• a prior probability distribution
• the observed results
• a likelihood function (a classical expression of the 

forward problem)



The Forward Problem
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The Forward Problem
• Use Poisson statistics to predict the distribution of 

observations from a given value of the measurand
• The measurand is best thought of as a count rate ρ

• otherwise it is difficult to deal with different counting 
times

• The observable is a number of counts, N, sampled
• from a Poisson distribution
• during time t
• with mean ρt

• Var(Poi(N | ρt)) = ρt
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Poisson Distribution, µ = ρt = 0.1
Poisson(N|.1)
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Poisson Distribution, µ = ρt = 1

Poi(N|1)
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Poisson Distribution, µ = ρt = 3
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Poisson Distribution, µ = ρt =10
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Normal Approximation to the Poisson
• No one tries to approximate a Poisson 

distribution with a Normal distribution in 
counting problems

• The normal approximation is applied to the 
difference of two Poisson distributions

• typically much more symmetric
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Difference of 2 Poisson Distributions

• When means are equal (e.g., blanks), are 
symmetric

• Discrete, not continuous 
• For µb = 3, P(N<0) = 0.42, P(N<0) = 0.58
• For Normal, P(N<0) = 0.500, P(N<0) = 0.500

• Probabilities on upper tails aren’t too much 
different from Normal
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Difference of 2 Poissons with µ = ρt = 3
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Difference of 2 Poissons with µ = ρt = 3
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The Observables 
and the Measurands
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The Observables
• Same apparatus for blank and sample
• Assume count times known (“time preselection” 

in ISO parlance)
• Assume no non-Poisson variance

• sometimes not valid in the real world
• see, e.g., Kathren 2001, ISO 1995

• Assume observed count is maximum likelihood 
estimate and estimate of its variance (“the Great 
Leap of Inference”)
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Notation - 1: Observed Quantities
• Convention: Roman letters denote observed 

quantities
• Nb: number of  blank counts observed
• Ng: number of gross counts observed
• tb: blank count time (s)
• tg: gross count time (s)
• Rb: blank count rate (s−1)
• Rg: gross count rate (s−1)
• Rn: net count rate (s−1)
• s(Rn): standard deviation of net count rate (s−1)
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Classical Statistics: Traditional 
Relationships Among Observed Quantities
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Notation  2: The Measurands -
[Unknown] Population Parameters
• By convention, Greek letters denote population 

parameters
• These reflect the measurand, the “true state of 

Nature” that we are trying to infer
• ρb: long-term  blank count rate (s−1)
• ρn: long-term net count rate (s−1) (due to analyte in 

unknown)
• ρg: long-term gross count rate (s−1)
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Notation 3: The Measurands -
[Unknown] Population Parameters
• Parameters are needed for sampling from 

population distributions
• µb: number of  blank counts expected during tb

• µg: number of gross counts expected tg

• σ(ρn): standard deviation of long-term net count 
rate (s−1)
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Classical Statistics: 
Relationships Among Population Parameters
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The Reverse Problem
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The Reverse Problem: 
Using Observed Quantities to Estimate 
Population Parameters (Measurands)
• Classical statisticians

• use Rn to estimate ρn

• use s(Rn) to estimate σ(ρn)
• ofter a poor assumption for low numbers of counts

• every time you make another measurement, you get a 
new Rn and s(Rn), that is, a new estimate of ρn and 
σ(ρn)

• Bayesian approach shown later



Decision Rules
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Terminology Is a Mess! and This Is Just in English!
 “DL” “MDA” 

Name decision level minimum detectable amount 

What? the lowest useable action level NOT an action level! 

Use: compare measurements to DL Use in planning, advertising or in a statement of 
work for a contractor: “How much will you charge 
to provide counting services with this MDA?” 

When? a posteriori: after the 
measurement is made 

a priori: before the measurement is made  
(but it does “vary with the nature of the sample” – 
NUREG-4007) 

Defined in HPS/ANSI N13.30 HPS/ANSI N13.30 

Currie’s Name critical level, LC detection level, LD 

Ill-defined Names  lower limit of detection, LLD; also, un-fortunately, 
“lower level discriminator,” detection limit, limit of 
detection (“LOD”) 

Turner’s name “minimum significant measured 
activity” 

“minimum detectable true activity” 

ISO 11929 name “decision threshold” “detection limit” 

Spanish name umbral de decision limite de deteccion 

MARLAP name “critical value of []” “minimum detectable amount” or “minimum 
detectable concentration” 

Strom’s name “false alarm level” “advertising level” 
“expected detection capability” 
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<DL <MDA

Always compare a result with DL
Never compare a result with MDA!
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<LC <LD

Always compare a result with LC
Never compare a result with LD!

Translation:
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Measurand versus Measurement Result
• 2 “types” of errors (wrong decisions)

• I made the correct 
decision (no error)

• The alarm should have 
gone off, but didn’t
• False negative
• I’ve committed a Type 
II error

No

• False alarm
• False positive
• I’ve committed a 
Type I error

• I made the correct 
decision (no error)

YesDid I detect 
anything? 
(Was the 
result above 
the decision 
level?)

NoYes

Is anything there?                              
(Is any activity present [above blank]?)
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Error Terminology
• A Type I error (wrong decision) is falsely concluding there’s 

activity present when no activity is present
• A Type II error is falsely concluding there’s no activity present 

when activity is present
• The probability of a Type I error is called α
• The probability of a Type II error is called β
• The number of standard deviations above zero on the standard 

normal distribution having a probability of α or β of being higher 
is known as the “standard normal deviate,” kα or kβ
• these are k1−α or k1−β in ISO notation

• For α = 0.05 (a 5% chance of making a Type I error), kα = 1.645
• For β = 0.05 (a 5% chance of making a Type II error),  kβ = 1.645
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Characteristics of Many Decision Rules

Nicholson De
(1963)
Sumerling and 
Darby (1981)

“Stapleton’s 
decision criterion”
(in Strom & 
MacLellan 2001)

Nicholson D1, D3 (1963)Uses Blank 
and Sample 
Counts

DLN+1 (in Strom & 
MacLellan 2001)

ISO 11929-1 2000
Currie (1968)
ANSI N-13.30-1996
Altshuler & Pasternak 
(1963)
Nicholson D2 (1963)

Uses Blank 
(background) 
Counts Only

Exact Method or 
Binomial 
Distribution

Assumes or 
permits Var(µ) > NAssumes Var(µ) = N
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Current Decision Level 
(a.k.a. Critical Level)

• α: acceptable probability of making wrong 
decision (Type I error): false alarm or false 
positive
• α is often taken to be 0.05

• kα: value of standard normal deviate for area 
1-α
• k0.05 is 1.645

• ignore non-Poisson uncertainty for simplicity
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Standard Normal Distribution, µ =0, σ = 1
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Cumulative Standard Normal Distribution
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Current “N13.30” Decision Rule
• Nicholson’s (1963) D2 rule; Currie’s (1968) rule; 

ANSI/HPS N13.30-1996; MARSSIM; Equation 
15a, Table 1 of ISO 11929-1:2000

• For α = 0.05

• Expressed as a rate, for non-paired blank:
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Problems with the “N13.30” Decision Rule
• Should be horizontal lines at α′ = α
• 25% wrong decisions at µb ≈ 0.7 count, regardless 

of α
• Actual false positive rate α′ is independent of α at 

very small numbers of counts 
µb = ρbtb << 1

• Even at µb = 10, only asymptotically approaches α
for larger values

• For very small α, no good even at µb = 100!



The Bayesian Approach to the 
Reverse Problem
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The Reverend Thomas Bayes 
1702-1761

• Probability is that 
degree of confidence 
dictated by the 
evidence through 
Bayes’s theorem. --
E.T. Jaynes
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• Names:

Bayes’s Rule (Simple form)

)(
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Factor gNormalizin
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• Some form of prior probability is required!
• The prior probability is what you know before you start
• The prior can have more or less effect on the posterior, 

depending on the precision of the data
• The prior can be subjective
• The prior is the topic of unresolvable arguments

Bayesian Approach: 
The Prior Probability 1
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• The prior can be “nothing”
• even “nothing” can take several forms
• “uniform,” “flat,” or “uninformative” prior: all values of 

B are “equally probable”
• “vague” prior: all values of ln(B) are equally probable…

• The prior can be hard to nail down
• “small values of  blank are more likely than large ones”

Bayesian Approach: 
The Prior Probability 2
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• The measurand or “state of nature” (e.g., count 
rate from analyte) is what we want to know

• The “evidence” is what we have observed
• The likelihood of the “evidence” given the 

measurand is what we know about the way nature 
works

• The probability of the state of nature is what we 
believed before we obtained the evidence

Philosophical Statement of Bayes’s Rule

factor gnormalizin
)measurand()measurand|evidence(

)evidence|measurand(
PL

P =
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• probability density is the probability that x lies 
in an interval between x and x + dx

• probability density is a continuous function

Probability Density
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• P’s are probability densities

• We want to determine the posterior 
probability density

Bayes’s Rule: Continuous Form

Factor gNormalizin
Prior  LikelihoodPosterior
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Use of the Posterior Probability Density
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Bayesian Approach for Blank Only

• Assume “uniform,” “uninformative,” or “flat” 
prior probability density

• Assume the likelihood probability density is a 
Poisson 
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Bayesian Approach for Blank Only

• With a uniform prior, Bayes’s rule inverts the 
likelihood to yield the posterior

• µ becomes a function of N, instead of N being 
a function of µ

• Posterior probability density:
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Posterior Probability Densities for µ 
(conditional on observed values)

Poisson mean, µ
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Bayesian Approach

• Assuming uniform “flat” prior probability 
distribution: any value of N is equally likely

• If N counts observed
• N is maximum likelihood, but N + 1 is expectation 

value:

• variance and standard deviation are simple:

1+=>< bb NN

1)(

1)Var(

+=><

+=><

bb

bb

NNs

NN



Battelle Pacific Northwest National Laboratory 76

Ancient References for Bayesian 
N+1 Result Using a Flat Prior
Rainwater, L.J.; Wu, C.S.  Applications of Probability Theory to

Nuclear Particle Detection.  Nucleonics 1(October):60-69; 1947.
Friedlander, G.; Kennedy, J.W.; Miller, J.M.  Nuclear and 

Radiochemistry. 2nd edition. New York: John Wiley & Sons, Inc.; 
1955 & 1963.  The 1963 reference has a section on “Statistical 
Inference and Bayes’ Theorem” (pp. 178-181).

Stevenson, P.C.  Processing of Counting Data. NAS-NS-3109.  
Livermore, California: National Academy of Sciences -- National 
Research Council;  1966.

Little, R.J.A.  The Statistical Analysis of Low-Level Radioactivity in 
the Presence of Background Counts.  Health Phys.  43(5):693-703; 
1982.
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Flat Prior?
• “True” Bayesians are offended by a flat prior

• “You always know more than nothing”
• Strom’s arguments for the flat prior

• it is the best of both worlds, classical and Bayesian
• inverting the prior gives a probability distribution that’s not 

available from classical methods
• it obeys Bohr’s correspondence principle: ‘Any new 

theory must correspond to the old theory in the regime 
in which the old theory is known to be valid.’

• it’s what you use on the first experiment
• it does not require one to postulate that everything is 

drawn from the same population
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Why the N13.30 Decision Rule Fails 
at Very Low Background Rates

• an observed background count causes a decision 
of “detected” (∝ µb)

• unless a gross count is observed as well (∝ µb
2)

• independent of α !
• so, for µb < 0.3, α ′ ∝ µb – µb

2

• reason: false assumption that observed values Nb
and Nb

1/2 are good estimates of the mean and 
standard deviation of background
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McCroan/MARLAP/ISO Decision Rule

• Generalization of Altshuler & Pasternak

• MARLAP July 2001 Draft; same as ISO (ISO notation):

• Only differs from A&P when count times differ
• notation problem: Strom uses kα where ISO uses k1−α
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An Obvious Argument?

• using both the background and gross sample 
measurements to estimate the background 
increases the power of the test
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Alpha = 0.05 
Paired Blank (t_b = t_g)
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Currie/N13.30
Currie/N13.30(N+1)
Nicholson D1
Turner/A&P
Nicholson D3
Nich.De/Sum&Darby
McCroan/A&P
Stapleton d=0.4
alpha

Note: Decision Rules 
Nicholson D1, 
Turner/A&P, 
Nicholson D3, 
McCroan/A&P, and 
Stapleton d=0.4 all 
coincide for α = 0.05.



Battelle Pacific Northwest National Laboratory 99

Results when tb = tg, Nb < 10
• Nicholson D1, Turner/A&P, Nicholson D3, and 

McCroan/ISO all coincide when tb = tg

• Nicholson D2/Currie/N13.30/MARSSIM is poorest
• “N + 1” rule is much better, but not adequate
• Stapleton’s rule is best, followed by the quartet, 

followed by De/S&D
• No rule is good below Nb = 3; smaller α is worse
• Need further work for different count times, tb ≠ tg

• ANSI/HPS N13.30 under revision; so is MARLAP
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Background
Currie 
(1968)

Altshuler 
& 

Pasternak 
Eq15

Sumerling 
and Darby 

(1981)

Currie 
using 
(N+1)

Nicholson 
(1963)

0 0 (1) 3 5 3 5
1 3 5 6 4 6
2 4 5 7 5 7
3 5 6 7 5 7
4 5 7 8 6 8
5 6 7 8 6 8
6 6 8 9 7 9
7 7 8 9 7 9
8 7 9 10 7 10
9 7 9 10 8 10
10 8 9 10 8 10

Comparison of Decision Rules for α = 0.05

Rntg
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Software Utility under Development
• Freeware Windows 9x/2000/XP 32-bit GUI 

application
• Shows decisions for all 8 rules for any Nb, Ng, tb, tg. 
• Not for public release yet – beta available
• Handles unequal background and gross count times
• Shows the amazing diversity of the decision rules
• Shows weakness of current “N13.30” rule
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Software Utility under Development
PNNL Counting Statistics Utility
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Software Utility under Development
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Monte Carlo Proofs
• Crystal Ball is an add-in to Microsoft Excel

• www.decisioneering.com
• Poisson simulation



Reporting and Recording of 
Measurement Results
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“Censoring” of Data
• Censoring data means changing measured results from 

numbers to some other form that cannot be added or 
averaged or analyzed numerically

• Examples of data censoring
• Left-censoring

• changing results that are less than some value to zero
• changing results that are less than some value to “less than” some value

• Right-censoring
• changing values from the measured result to “greater than” some value

• Rounding
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Why should censoring of data be avoided?

• Censoring means changing the numbers
• In a sense, it is dishonest
• If results are ever 

• summed, 
• averaged, or 
• used for some other aggregate analysis such as fitting a 

distribution, 

censoring makes this 
• difficult, 
• impossible, or 
• simply biased.
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Censoring Examples
• Five results for discharge from a pipe taken over 1 year

• uncensored results: −2, −1, 0, 1, and 2
• sum = 0 (total discharge for the year is 0)
• average = 0 (average discharge for the year is 0)

• Example 1: Set negative values to zero
• censored results: 0, 0, 0, 1, and 2
• sum = 3 (i.e., total discharge for the year is 3; this is not true)
• average = 0.6 (i.e., average discharge for the year is 0.6; false)

• Example 2: Suppose LC = 2. Set all values < 2 to “<”
• censored results: <, <, <, <, and 2
• sum = ? (total discharge for the year cannot be determined)
• average = ? (average discharge for the year cannot be 

determined)
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But Negative Activity Is Meaningless…
• No, it’s not meaningless
• Just like money, subtracting a big number from a small 

number gives a negative value
• You have 100€, you charge 200€, you owe 100€
• 100€ − 200€ = −100€ (your net value)
• this doesn’t mean you can find a bank note for −100€
• stocks go up and down; the end of the year value includes all 

changes, positive and negative
• Negative activity only means that random statistical 

fluctuations resulted in a negative number
• If negative, zero, or less-than values are suppressed, the 

sum is biased.
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More Reasons Not to Censor
• Upper confidence limits of negative, zero, or less-than 

values
• may be small positive numbers
• needed for some applications (e.g., probability of causation)

• Censoring is prohibited by many standards and regulations
• ANSI N13.30-1996: “Results obtained by the service laboratory 

shall be reported to the customer and shall include the following 
items …quantification using appropriate blank values of 
radionuclides whether positive, negative, or zero”

• Many U.S. Department of Energy regulations require reporting 
raw data, calculated results (positive, negative, or zero), and total 
propagated uncertainties

• Decision on actions can be made with uncensored data
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Rounding Is Censoring
• Rounding a number is 

• changing its value
• biasing the value
• censoring

• Rounding often “justified” by claiming uncertainty
• Uncertainty does not justify changing the answer
• Explicitly state the uncertainty

• Beware of converting units of a rounded number and then 
rounding again!

• Intermediate results and laboratory records should never 
be rounded

• The only time to round is in presentations or 
communications
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Censoring

Report and Record All 
Measurements with No Censoring 

and Minimal Rounding



Exact Numbers, Imprecise Numbers, 
and Rounding of Numbers
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2 Kinds of Numbers in the World
• exact numbers and imprecise numbers
• While “round” numbers are easy to deal with, 

rounding of exact numbers can cause difficulties
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Exact Numbers Are Found in…
• counting (a catch limit of 3 trout, 14 coins) 
• definitions (12 items in a dozen, 1000 m/km, 

37,000,000,000 Bq/Ci)
• geometry (6 faces on a cube, π, ϕ[Golden mean])
• mathematics (the “2” in E = mc2, e, √2)
• addresses (1600 Pennsylvania Avenue, 

www.pnl.gov, 192.234.201.101, 1-800-555-1212, 
a serial number, a Social Security number)

• laws (voting at age 21 and over) 
• regulations (50 mSv per year, 1/3 WL, 4 WLM)
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Perceiving “Exactness” or Precision
• the way a number is represented affects our 

perception of its exactness
• attempting to express the exact rational number 

1/3 as a decimal leads only to successive 
approximations, depending on how many figures 
one uses: 0.3, 0.33, 0.333, etc.

• some exact numbers defy expression: e.g., π and 
√2

• exact numbers are arbitrarily precise and have no 
uncertainty
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Imprecise Numbers
• measurements
• values inferred from measurements using models or 

theories
• approximate numbers or bounding numbers

• “He’s at least 170 cm and 80 kg.”
• poorly recalled numbers

• “I think she lives in the 300 block of Colley Avenue.”
• estimates
• qualitative expressions of quantitative ideas

• early, hot, fast, energetic, nearly full
• scientific wild assumption guesses (SWAGs)

• “My dad is a million times stronger than your dad.”
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Imprecise Numbers
• It is important to separate conventions that are 

appropriate for results of measurements, e.g., 
• the use of significant figures
• rounding
• explicit statements of uncertainty, such as 5.6 ± 1.3) 

from use with exact numbers



Expressing What We Know 
About a Quantity
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How Many “Significant Figures” in
• 15?

= 11112 ⇒ 4 significant figures (base 2)
= F16 ⇒ 1 significant figure (base 16)

• MDCCCLXXXVIII?
=188810 ⇒ 4 significant figures (base 10)

• 1/3?

2) (base figurest significan 01.0...01010101.0

10) (base figurest significan 3.0...33333333.0
3) (base figuret significan 11.0

22

1010

3

∞⇒==

∞⇒==

⇒=
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How Many “Significant Figures” in
• 1,073,741,824 ?

=230

=100,000,000,000,000,000,000,000,000,0002
⇒ 1 significant figure (base 2)

• 230 ≠ 109
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IEC Prefixes for Binary Multiples

• International Standard IEC 60027 2, 2nd ed., 2000
• “Although these prefixes are not part of the SI, they should be used 

in the field of information technology to avoid the incorrect usage of 
the SI prefixes.” http://physics.nist.gov/Pubs/SP330/sp330.pdf

~1.1529E+18260Eiexbi
~1.1259E+15250Pipebi

1,099,511,627,776240Titebi
1,073,741,824230Gigibi

1,048,576220Mimebi
1,024210Kikibi

Value (base 10)ValueSymbolBinary Prefix

uppercase
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“Significant Figures”
• The concept of significant figures is out of date in the 

computer age
• Abridging numbers (rounding) is fine for simplifying 

communication of quantitative values
• We must disaggregate what we know about the precision 

and accuracy of a number from how we represent the 
number

• There are 2 reasons not to round in scientific work:
• rounding causes inaccuracies when intermediate results are 

used in further calculations
• rounding causes dual values when doing unit conversions



Battelle Pacific Northwest National Laboratory 128

Rounding Causes Inaccuracies
• ICRP 30 gave 1 “significant figure” for dose 

coefficients ‘because the values are not well-
known’

• Rounding 1.49 down to 1, or 1.51 up to 2 doesn’t 
help! It only creates bias
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What Could “1 Significant Figure” Mean?

± 11.1%
± 12.5%
± 14.3%
± 16.7%
± 20%
± 25%
± 33%
± 50%

+100% or – ∞%
±1 in the last digit

8.5 – 9.499
7.5 – 8.498
6.5 – 7.497
5.5 – 6.496
4.5 – 5.495
3.5 – 4.494
2.5 – 3.493
1.5 – 2.492

0.95 – 1.491
Range on 1 sig. fig. log scale
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Significant Figures
• As far as the phone company is concerned, my 

phone number is 5,093,752,626
• However, if the ICRP is calling, they can just dial 

5E9 (rounded to 1 significant figure)
• Q: "What's the difference between 5001 

millirems and 4999 millirems?"
• A: "6 months in jail and $10,000 per day."
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Avoidable Errors: Rounding Causes Dual 
Values When Doing Unit Conversions

• Values found in various locations in 10 CFR 835, 
DOE’s Occupational Radiation Protection

23.3% higher 
than Appendix 

A value

11.1% higher 
than Appendix 

A value

-Exact value is

1E33E−8 1/310 CFR 835 Appendix 
A published value

1.23E3 3.3E−81/3Exact value

EEC, SI units 
(Bq m−3)

EEC, traditional 
units (µCi/mL)

PAEC 
(WL)222Rn
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Rounding Is Sometimes Okay
• For communication
• For simple conversions

• 4×8 sheet of plywood is about 122×244 cm or even 
1.2 × 2.4 m

• There is no need to express an uncertainty to 
unreasonable number of digits; usually 2 or 3 is 
sufficient
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How We Represent Numbers
• We must abandon the notion that how we represent 

numbers is inevitably tied to their precision or accuracy 
uncertainty

• Example
• computers usually represent numbers as single or double 

precision “floating point” numbers (about 7 or 14 digits with a 
sign and a power of 10) or short or long integers (+ (215 − 1) or 
+ (231 − 1))

• The computer’s internal representation of numbers as 1s and 
0s makes no consideration of the precision or accuracy or even 
exactness of the numbers.

• That doesn’t make computers wrong
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So, What Should We Do?
• Aggregating the value of a number with the 

uncertainty in the number is no longer sensible
• especially for intermediate results that will be used in 

further calculations 
• e.g., dose coefficients (Sv/Bq)

• One way to express uncertainty:
• elementary charge, e 
• 1.602 176 462 (63) 10-19 C 
• [fractional uncertainty] 3.9 10-8
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What We Really Need to Know About a Number

1. the quantity
2. the unit
3. how the number was obtained (measurement, 

calculation using 1 or more measurements, model, 
estimate, …)

4. the value
5. the uncertainty
6. the kind of uncertainty (standard deviation, geometric 

standard deviation, range)
7. how the uncertainty was obtained (e.g., repeated 

measurements, calculations, models, estimate…)
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Example of 7-Vector for 2 Numbers

Multi-tracer method; 
Resampling Statistics

ISO T.P.U.How uncertainty 
obtained

G.S.D.S.D.Type of Uncertainty
3.50.03Uncertainty
420.13Value

Serial Pu/Am Urine & 
Fecal Bioassay; ICRP 68 

Models; IMBA

OSL DosimeterHow obtained
mSvmSvUnit

Committed Effective 
Dose

Deep Dose 
Equivalent

Quantity
Intake

External 
Irradiation

Component of           
7-Vector



Back to the Real World…
Decision Strategies
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Additional CVs

• CV(tracer calibration) = stracer/Atracer

• CV(tracer volume) = stv/Vtracer

• CV(aliquot volume) = saliqout vol./Valiquot

• CV(Type B system performance) = 0.03
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Uncertainty Propagation Formula
• Simple form of uncertainty propagation ignoring 

covariances:

• “Total Propagated Uncertainty,” TPU:

• Hanford uses 2×TPU as a starting point for 
decisions

total

1

2
total

                  

)(  where,)(

CVATPU

x
xuCVCVCV
i

i
i

N

i
i

×=

== ∑
=
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Practical Decision Making: A Multi-step 
Process Using Classical Statistics
• If a bioassay result is unexpectedly > 2×TPU, 

several possibilities
• if result not excessively elevated, recount sample for 

4× as long (i.e., 10,000 min for Pu α-spec at Hanford)
• if recount result > 2×TPU, obtain new sample (if 

possible and meaningful) and count new sample
• if new sample result > 2×TPU, decide “detected”

• Result: negligible false positive rate
• Result: minimization of false negative rate
• Moral of the story: you don’t have to decide on 

only one measurement of one sample!
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Bayesian Decision Process
• Depends on whose prior is used

• “Management Prior” or “Optimist’s Prior:” There’s 
no way that there’s activity in this sample (zero and 
low values are heavily weighted)

• “Pessimist’s Prior:” Of course there’s activity in this 
sample, and it’s bigger than you think (high values 
weighted)

• “Ignorant (or Uniform) Prior:” Anything is possible
• Bayesians can recount and resample, too!
• More information is better, but takes time and €€



Classification and 
Misclassification Statistics
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Definitions of Terms for Correct 
Classification and Misclassification

• A test, e.g., a nasal smear, may be for whether a person 
experienced an intake of radionuclides

• Do nasal smears correctly predict intakes and non-
intakes?

• Wrong prediction (wrong classification) is a spurious 
error

nb+da+cTotal
c+ddc−

a+bba+Actual 
State

Total−+
Classified State
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Definitions of Terms for Correct 
Classification and Misclassification

prevalence = (a+c)/n
sensitivity = a/(a+b)
specificity = d/(c+d)

positive predictive value, PPV = a/(a+c)
negative predictive value, NPV = d/(b+d)

false negative rate = 1 − sensitivity
false positive rate = 1 − specificity
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Use of Statistics to Evaluate Nasal Swabs
• Obtain real data from a plutonium facility
• Bioassay triggered by workplace indicators

• Soon after suspected intake, perform nasal swabs
• Follow up with bioassay samples (fecal)
• Bioassay = Actual State
• Nasal Swab = Classified State

• Are nasal swabs a good indicator of intake as 
confirmed by bioassay?

• Acknowledgement: Terry A. Brock did this work
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Nasal Swab and Bioassay Data

Data courtesy Terry A. Brock, Ph.D.

32326360Total
1068224Negative (<DL)
21718136Positive (>DL)

Total
Negative 

(<DL)
Positive 
(>DL)Bioassay Results

Nasal Swab
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Are Nasal Swabs Worse than Nothing?

0.226False Positive Rate
0.834False Negative Rate
0.672Prevalence of Intakes

0.3680.2560.312Negative PV
0.7240.4760.600Positive PV
0.8530.6940.774Specificity
0.2150.1160.166Sensitivity

Upper 
95% CI

Lower 
95% CIResultsStatistic
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Nasal Swab Conclusions
• If nasal swab is “very high,” there probably was an 

intake
• Highest 10 nasal swabs were all associated with intakes

• If nasal swab is zero or other than “very high,” it means 
essentially nothing
• How can this be?
• No inhalation intake occurred, but

• particles stopped in nose or mouth, were removed by swab
• There was an intake, but 

• nose blow cleared particles
• no particles deposited in nose or mouth
• nasal swab didn’t capture particles



Consequences of 
Wrong Decisions
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Do We Need Better Decision Rules?

• False positive bioassays
• needlessly place worker on work restriction
• needlessly alarm worker
• needlessly spend money on unneeded re-sampling 

and analyses
• needless investigations

• False negative bioassays
• not protective of worker
• if later discovered, can destroy trust and 

communication
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Do We Need Better Decision Rules - 2?

• False positive environmental samples
• unnecessary, costly cleanup
• needlessly alarm public
• needlessly spend money on unneeded resampling and 

analyses
• needless investigations
• political consequences

• False negative environmental samples
• not protective of public and environment
• if later discovered, can destroy trust and communication
• political consequences



Averaging to Improve 
Detection Capabilities
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Applicable Under Some Circumstances

• Examples
• Monthly, weekly, or daily samples of discharges from 

a pipe or stack that must meet an annual limit
• Multiple samples from a “risk analysis unit”
• Any time a standard applies to a volume that is large 

compared to sample volume
• Evaluation of “missed dose” from pooled bioassay 

samples
• Why it works: mass or number of samples scales 

with n, counting uncertainty scales with √n
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Air Sample Example (NUREG-1400)
• n is number of samples
• Tb is blank count time
• Tg is gross (sample) count time
• Rb is background count rate
• E is filter efficiency
• TS is sampling time
• F is air flow rate; FTS is volume sampled
• K is counting efficiency (counts s−1 Bq−1)
• MDC is “minimum detectable average concentration”CMD
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Air Sample Example (NUREG-1400)

• and if all efficiencies, flow rates, sample times, 
etc. are equal,

2

1
,S

1
222

,b,g
,b

1
,g

1

2

1
,S

11

29.33

,S 


















+

+





































=

∑

∑

∑∑

∑

=

=

==

=

n

i
i

n

i iii

ii
i

n

i
i

n

i
iii

n

i
i

T

KFE
TT

R

TTKFE

T
CMD

i

S

bg
b

gS

11

29.33
EFKTn

TT
R

TnEFKT
CMD











+

+=



Battelle Pacific Northwest National Laboratory 157

Method Works to Extract Signal from Noise

• Summing γ-Spectra 
• 46-keV (4%) 210Pb γ-photon not visible or detected by IGe in 

vivo counting of 20 uranium miners
• summing 20 spectra revealed a 46-keV peak (Palmer 1984)
• can’t tell which miner it’s in, but can tell what average and 

total is!
• principle is widely used

• kinetic phosphorimetry for chemical determination of U
• ion cyclotron resonance mass spectroscopy for proteomics
• any multiple-interrogation technique

• Can add counts of same sample made at different times
• e.g., recount

n/1



Probabilistic Background 
Subtraction
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The Problem: 2 Kinds of “Background”

• Question 1: Is there activity in the sample above 
blank? If “no,” stop.

• Question 2: If the answer to Question 1 is “yes,” 
how much of the activity is due to ambient levels 
and how much is due to a particular source (e.g., 
the workplace, release from a nuclear power 
plant)?
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Problem Radionuclides: 137Cs and natU
• Your job: analyze environmental or bioassay samples 

and determine what is “natural” and what is 
occupational or anthropogenic (human-made)

• 137Cs is ubiquitous (fallout and orphan source meltings
at steel mills) as is natU

• Solution(s)
• tricks like 236U as a tracer for “recycled” U
• baseline measurements (not possible after the fact)
• analysis of nearby environment or similar workers
• probabilistic background subtraction (makes the most of what 

you’ve got)



Battelle Pacific Northwest National Laboratory 161

Example: 137Cs in a Worker
• Intrinsic germanium (IGe) in vivo chest count
• 137Cs is a tracer for Hanford tank waste, a 

mixture of fission products, traces of U and 
transuranics (TRU)

• 137Cs produces much less dose than TRU
• Question: Is the 137Cs from fallout or the 

workplace?
• Answer: make a probabilistic statement about the 

measurement
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Whole-Body Counts of 409 Unexposed Workers
• Average 3.46 Bq (0.094 nCi)
• Chomentowski & Kellerer (2000) smoothing shown
• For a given worker result with its stated uncertainty, one can 

subtract “background” 409 different times (not shown)
Probability Density Functions (PDFs)
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2 Distributions: Worker and Environmental

• Worker: Normal
distribution, 
0.50 + 0.12 dpm/d

• Environmental:
lognormal dist.,
geo. mean = 0.037
dpm/d, GSD = 3.9

0.00 0.54 1.09 1.63 2.18

Environmental
0.1400 0.3200 0.5000 0.6800 0.8600

E8
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Probabilistic Subtraction of Environmental 
U from Single Worker Bioassay

• mean 0.407 + 0.241 dpm/d
• median = 0.436 dpm/d
• 95th %ile = 0.655 dpm/d
• 99th %ile = 0.695 dpm/d

Frequency Chart

 (dpm/day)

.000

.009

.018

.027

.036

0

907

3628

-0.29 0.02 0.34 0.65 0.97

100,000 Trials    98,703 Displayed

Forecast: Net Uranium Excretion
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The Future: A Personal Forecast
• Distributions are the way of the future
• In USA, probability of causation is being tied to 

95th %ile; this will spread to other fields
• Regulatory bodies, competent authorities, will 

begin to require compliance to upper percentiles, 
not means or medians, as “protective” of public, 
workers, and the environment

• Probabilistic methods will become the norm



Non-Bayesian Methods for Evaluating 
Uncertainty in Complex Models
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Non-Bayesian Methods for Evaluating 
Uncertainty in Complex Models

• A variety of methods are available for evaluating Type 
B uncertainty (e.g., model suitability)

• Biokinetic models have been prototyped, but 
environmental models are similar

• Methods include
1.  A “resampling” method

• doesn’t mean “obtaining another sample,” but rather, it means 
“sampling subsets of all data”

2. Updating: Recalculating every time you get another data 
point

3. Use of multiple radionuclides one at a time
• Strom 2003



Inferring Dose from 
Measurements, Models, 
Assumptions, or None of the 
Above
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Dosimetry
• “dose” + metry

• root is metron (Greek: to measure)
• current usage: any dose number is presumed to 

be the result of “dosimetry”
• thesis

• If measurement or observation is the dominant 
activity, and 

• uncertainties in results are predominantly due to 
measurement uncertainty, 

use the word “dosimetry.” Otherwise, maybe new terms 
would be more appropriate!
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Measuring the Quantity of Radiation
• observation of biological 

response (e.g., erythema, 
chromosome aberrations)

• cloud chambers
• film blackening
• appearance or sound of 

bubbles in superheated 
liquids

• analysis of activation or 
fission product yield

• scintillations
• Cherenkov radiation (light)
• thermoluminescence (TL) or 

optically stimulated 
luminescence (OSL)

• observation of radiation damage 
(e.g., chemically etching damage 
in film, radiochromic changes, 
thermal and electrical 
conductivity changes)

• chemical changes as quantitated 
by light absorption or nuclear 
magnetic resonance

• measurement of electric charge 
or current in solids (Ge and Si) 
or gases such as xenon, P10, or 
air, and

• calorimetry
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Dosimetry for External Irradiation
• most measurements are outside of the human body
• want to know dose inside or at surface
• external irradiation: few inferential steps

• absorption
• albedo
• spectrum changes
• based on types, energies, directions of incident radiation
• assumptions about person wearing dosimeter
• neutrons still a challenge

• irradiation following intake or ontake of radioactive 
material
• surgical implantation of dosimeters? no.
• inference
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Dosinference for Internal Irradiation
• blend of “dose” + “inference” (Strom 2002)

• uncertainties associated with inferential steps dwarf 
uncertainties of measurement steps
• exceptions: 3H and alkali metals, e.g., 137Cs

• measurements tend to be of dose-rate like quantities, 
rather than dose-like quantities
• rate of photon emission from regions of body (in vivo 

counting)
• count rate or numbers of atoms (TIMS, ICP-MS) in excreta
• count rates from air samples
• exception: chromosome aberrations

• infer activity (and its uncertainty) in organs and tissues 
from measurements and biokinetic models
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Non-Measured Inputs to Dosinference
• knowledge or guesses of time course and route(s) of intake
• identity of all radionuclides and proportions in a mixture
• particle size distribution and transportability for inhalation
• gastrointestinal (GI) tract absorption
• chemical and physical form for ingestion, injection, wound, or 

dermal absorption from an ontake
• true daily excretion rate for in vitro bioassay (non 24-h samples)
• biokinetic models

• Reference Man usually used, not individual data
• individual chest wall thickness and 40K corrections
• site-specific solubility, e.g., Y-12’s Class Q uranium

• air sample data, stay time, respiratory protection data, respiratory 
tract model
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What’s Uncertain When Inferring Intake?
• Circumstances

• time or time course of intake
• route(s)

• Material characteristics
• radionuclide mixture
• particle size and shape
• chemical form(s) and transportability (S, M, F, or real)

• Measurements
• counting or measurement uncertainty
• 24-h sample? simulated? adulterated or contaminated?

• Biological variability
• availability and validity of model(s) 
• systematic differences between individual and models
• among bioassay samples or measurements

• Interpretation
• interference from environmental exposures
• prior intakes
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Dosinference from Radon Progeny
• short-lived decay products of radon & thoron

• particle size
• equilibrium factor
• unattached fraction
• smoking
• nose breathing 
• level of exertion
• diurnal variations

• ICRP (1995) “dose conversion convention”
• 5 mSv/WLM rather than 12.5, based on epidemiology
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Doswaggery
• blend of “dose” + “swag”          (Strom 2002)

• root is acronym for scientific wild assumption guess (US 
popular usage)

• examples of swags
• predicting the weather two weeks in advance
• predicting the value of the stock market in a year

• uncertainties in assumptions dwarf even the 
uncertainties in the inferential steps, much less the 
uncertainties in the measurements

• may not rely on measurement at all, or may rely on 
measurements only tenuously associated with individual 
for whom a dose is being inferred
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Imputed Values
• to “impute” has taken the meaning to “make up a 

number”
• Reissland (1982) used the term “notional dose” for what today 

is termed an “imputed dose”
• lost or damaged external dosimeter, spoiled bioassay or 

air sample
• imputation commonly done for regulatory compliance

• interview worker & colleagues, dose rates, time-in-area
• average preceding and subsequent dosimeter results

• can be very accurate 
• CARI-6 for air travel 
http://www.cami.jccbi.gov/AAM-600/610/600Radio.html

• can be done for “less than detectable” results
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Doswaggery to Impute Doses
• not all imputed doses are doswags

• production lines
• radiology department with steady caseload
• careful dose reconstructions such as RERF DS02

• examples of doswaggery:
• assigning historical uranium miners potential alpha energy 

exposures (J h m–3 or WLM) based on measurements in 
similar mines

• historical dose reconstruction for litigation in U mining, 
milling, refining in absence of any concurrent workplace 
measurements

• some projections of future (50-year “committed”) doses
• population doses from high level waste repositories
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Uncertainty Is Not Necessarily Error
• “The result of a measurement (after correction) can 

unknowably be very close to the value of the measurand 
(and hence have a negligible error) even though it may 
have a large uncertainty.  Thus the uncertainty of the 
result of a measurement should not be confused with the 
remaining unknown error.” – ISO (1995)

• a doswag may be accurate but is highly uncertain
• long-range weather forecasts are sometimes correct!
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Word Choice Based on Uncertainty

1.01 to 2~~Dosimetry

2 to 20~Dosinference

>20~Doswaggery

Imputed 
Data

Model 
ParametersModels

Measure-
ments

Ratio of
97.5%ile

to 2.5%ile

of Inferred 
Dose

Typical Dominant Uncertainty

Term

T denotes important; TT denotes very important; ~ relatively trivial
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Calling a Spade a Spade…
• maybe it’s time to choose different words when 

the dose in question is measured, inferred, or 
essentially assumed

• dosimetry when measurement uncertainty 
predominates

• dosinference when model parameter uncertainty 
predominates

• doswaggery when assumption or imputed value 
uncertainty predominates



Conclusions and 
Recommendations
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Conclusions 1
• There are severe problem of terminology

• many names for the same concept
• concepts mis-named
• concepts mis-used 
• compare measurements with 

decision threshold LC, not detection level LD

• There are 2 “counting problems”
• Forward problem done well by classical statistics
• Reverse problem only done by Bayesian methods
• Bayesian result: expectation value is N+1, so uncertainty 

is greater

<LC <LD
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Conclusions 2
• There are at least 8 decision rules

• Most use a “Great Leap of Inference:” N is a good 
estimate of ρt & Var(ρt)

• False positive rates are not as claimed for small numbers 
of counts

• ANSI N13.30/MARSSIM/Currie/etc. DL formula 
• yields too many false positives
• fairly good only if counts > 100
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Conclusions 3
• There are much better approximate & exact solutions

• N + 1 rule is better, but not correct
• Altshuler & Pasternak/Turner better (??? stay tuned for 

MARLAP)
• Detailed Bayesian method works if a flat prior is acceptable
• Nicholson’s (1963) and Sumerling’s & Darby’s (1981)exact 

(classical) solution can be implemented - probably the soundest 
theoretical foundation, but very few false positives

• McCroan/ISO 11929 ok for equal count times
• Stapleton’s rule performs the best
• Rigaud (2003) not yet evaluated
• No rule works well at very low counts!
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Conclusions 4
• MARLAP is eagerly awaited 
• More work to be done on software – this shouldn’t be 

so hard!
• Consensus needed
• Bayes’s methods need to be mainstreamed
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Conclusions 5
• Decision strategies (Bayesian and classical)

• You can re-count a sample and decide again
• You can count the other half of a split or re-sample
• Combinations of these lead to essentially no false positives

• An enumeration of the consequences of wrong decisions 
shows that we need the best decision rules we can get

• Detection capabilities: a decision on decision rules needed 
first

• Report and record uncensored, un-rounded 
positive, zero, and negative measurements 
results with uncertainties 
to avoid falsely exaggerating levels

Censoring
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Conclusions 6
• There is great utility in averaging results of 

many samples when appropriate
• If a regulatory guideline applies to a year, average 

samples over a year
• Probabilistic blank and environmental 

background subtraction maximizes 
information content while distinguishing 
human-made signal from environmental 
background

• There exist several non-Bayesian methods of 
uncertainty evaluation in modeling
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References
• Visit http://bidug.pnl.gov/ (DOE Bioassay and 

Internal Dosimetry Users Group)
• Visit http://www.pnl.gov/bayesian for many 

Bayesian links, including Los Alamos National 
Laboratory (LANL) site and its links
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