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Statistical Criteria for Decision-Making in 
Environmental Cleanup
• a priori determinations of detection capabilities
• a posteriori decisions of whether radioactivity 

has been detected in a particular sample
• total propagated uncertainty in measurement 

results
• sampling strategies
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Most Difficult: Alpha-Emitters

• problems are most difficult for alpha-emitting 
radionuclides
• 230Th (found in uranium mill tailings)
• Pu (from reprocessing of irradiated nuclear fuel)

• expense of sampling and laboratory analysis
• α-spectrometry
• mass spectrometry (ICPMS, TIMS)

• expense and consequences of incorrect decisions
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Outline
• The problem of terminology
• The two “counting problems”
• A discussion of “total propagated uncertainty”
• Individual sample decision levels and the “Great Leap of Inference”
• Compare measurements with decision threshold, not detection level
• Decision strategies (Bayesian and classical)
• Consequences of wrong decisions: do we need better decision rules?
• Detection capabilities
• Report and record uncensored, un-rounded measurements results 

with uncertainties
• Utility and limitations of averaging results of many samples
• Probabilistic blank and environmental background subtraction
• Non-Bayesian methods of uncertainty evaluation in modeling
• References
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Terminology 1
• measurand: the unknown value of a physical quantity 

representing the “true state of Nature”
• measured result: result of a measurement made of a 

measurand
• error: the [unknowable] difference between a 

measured result the actual value of the measurand
• uncertainty of measurement: a “parameter, 

associated with the result of a measurement, that 
characterizes the dispersion of the values that could 
reasonably be attributed to the measureand.”
• a bound for the likely size of the measurement error

• spurious errors include blunders, mistakes
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Terminology 2

• Uncertainty that is evaluated by the statistical 
analysis of series of observations is called a 
“Type A” uncertainty evaluation.

• Uncertainty that is evaluated by means other
than the statistical analysis of a series of 
observations is called a “Type B” uncertainty 
evaluation.

• This presentation focuses on Type A uncertainties.
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Type A Uncertainty Evaluation
• represented by a statistically estimated standard 

deviation

• associated number of degrees of freedom = vi. 
• the standard uncertainty is ui = si. 

2
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Type B Uncertainty Evaluation
• represented by a quantity uj

• Since the quantity uj
2 is treated like a variance and uj

like a standard deviation, for such a component the 
standard uncertainty is simply uj.
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NIST Technical 
Note 1297 (1994)

• same as 1995 ISO Guide 
to the Expression of 
Uncertainty in 
Measurement 

• http://physics.nist.gov/cuu/pdf/tn1297.pdf



Total Propagated Uncertainty
(=Combined Standard Uncertainty)
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Uncertainty Propagation Formula
• Combined standard uncertainty

• Derived from first-order Taylor series expansion
• Not accurate for large uncertainties (e.g., broad 

lognormal distributions)
• Covariances usually unknown and ignored
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Total Propagated Uncertainty
• Includes

• counting uncertainty for analyte (A)
• counting uncertainty for tracer (includes 

radiochemical recovery and counting yield) (A)
• uncertainty in tracer calibration (B)
• uncertainty in tracer volume (A)
• uncertainty in aliquot volume (B)
• “system” uncertainty (B) ≈ 3%

• We return to TPU later



The Two Aspects of 
the Counting Problem
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The Two Counting Problems
• Radioactive decay is a Bernoulli process described by 

a binomial or Poisson distribution
• The “forward problem”

• from properties of the process, we predict the distribution of 
counting results (mean, standard deviation (SD))

• measurand → distribution of possible observations
• The “reverse problem”

• measure a counting result
• from the counting result, we infer the parameters of the 

underlying binomial or Poisson distribution (mean, SD)
see, e.g., Rainwater and Wu (1947)

• this is the problem we’re really interested in!
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Two Kinds of Statistics
• Classical statistics 

• does the forward problem well
• does not really do the reverse problem

• Bayesian statistics does the reverse problem 
using 
• a prior probability distribution
• the observed results
• a likelihood function (a classical expression of the 

forward problem)



The Forward Problem
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The Forward Problem
• Use Poisson statistics to predict the distribution of 

observations from a given value of the measurand
• The measurand is best thought of as a count rate ρ

• otherwise it is difficult to deal with different counting 
times

• The observable is a number of counts sampled 
from a Poisson distribution with mean ρt

• Var(Poi(N | ρt)) = ρt



Pacific Northwest National Laboratory 18

The Forward Problem: A Bernoulli Process

1. It consists of M trials (i.e., M atoms each 
having a chance to transition)

2. Each trial has a binary outcome: success of 
failure (transition or not)

3. The probability of success (transition) is 
constant from trial to trail (all atoms have an 
equal chance to transition)

4. The trials are independent
Turner JE. 1995. Atoms, Radioactivity, and Radiation Protection, 2nd ed., p. 290 
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Binomial Distribution - 1
• Consider

• Probability that exactly N will decay in time t is
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Binomial Distribution - 2
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Poisson Distribution - 1
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• Expected number of counts N given Poisson 
mean µ

• If 
M >> 1 (lots of radioactive atoms)
M >> N (not too many of them decay), and
p << 1 (decay probability during counting is low)

then the Poisson distribution is an excellent 
approximation to the binomial distribution
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Poisson Distribution, µ = ρt = 0.1
Poisson(N|.1)
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Poisson Distribution, µ = ρt = 1

Poi(N|1)
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Poisson Distribution, µ = ρt = 3
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Poisson Distribution, µ = ρt =10

Poi(N|10)
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Normal Approximation to the Poisson
• No one tries to approximate a Poisson 

distribution with a Normal distribution in 
counting problems

• The normal approximation is applied to the 
difference of two Poisson distributions

typically much more symmetric
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Difference of 2 Poisson Distributions

• When means are equal (e.g., blanks), are 
symmetric

• Discrete, not continuous 
• For µb = 3, P(N<0) = 0.42, P(N<0) = 0.58
• For Normal, P(N<0) = 0.500, P(N<0) = 0.500

• Probabilities on upper tails aren’t too much 
different from Normal
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Difference of 2 Poissons with µ = ρt = 3
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Difference of 2 Poissons with µ = ρt = 3
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Difference 
of 2 
Poissons
with 
µ = ρt = 3

N_net

Diff. of 2 
Poissons, 
Mean=3

Normal, 
Mean=0, 

SD= 
SQRT(6) N_net

Diff. of 2 
Poissons, 
Mean=3

Normal, 
Mean=0, 

SD= 
SQRT(6)

-14 1.4E-7 5.5E-9 0 0.583 0.500
-13 1.2E-6 5.6E-8 1 0.735 0.658
-12 6.4E-6 4.8E-7 2 0.851 0.793
-11 2.9E-5 3.6E-6 3 0.926 0.890
-10 0.00012 0.00002 4 0.967 0.949
-9 0.00044 0.00012 5 0.987 0.979
-8 0.0015 0.0005 6 0.995 0.993
-7 0.0046 0.0021 7 0.9985 0.9979
-6 0.0129 0.0072 8 0.9996 0.9995
-5 0.033 0.021 9 0.99988 0.99988
-4 0.074 0.051 10 0.99997 0.999978
-3 0.149 0.110 11 0.999992 0.999996
-2 0.265 0.207 12 0.999998 1
-1 0.417 0.342 13 0.999999 1
0 0.583 0.500 14 0.999999 1



The Observables 
and the Measurands
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The Observables
• Same apparatus for blank and sample
• Assume count times known (“time preselection” 

in ISO parlance)
• Assume no non-Poisson variance

• sometimes not valid in the real world
• see, e.g., Kathren 2001, ISO 1995

• Assume observed count is maximum likelihood 
estimate and estimate of its variance (“the Great 
Leap of Inference”)
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Notation - 1: Observed Quantities
• Convention: Roman letters denote observed 

quantities
• Nb: number of  blank counts observed
• Ng: number of gross counts observed
• tb:  blank count time (s)
• tg: gross count time (s)
• Rb:  blank count rate (s−1)
• Rg: gross count rate (s−1)
• Rn: net count rate (s−1)
• s(Rn): standard deviation of net count rate (s−1)
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Classical Statistics: Traditional 
Relationships Among Observed Quantities
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A Poor Assumption: 
“N is a good estimate of Var(N)”
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• A better assumption may be
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Notation  2: The Measurands -
[Unknown] Population Parameters

• By convention, Greek letters denote population 
parameters

• These reflect the measurand, the “true state of 
Nature” that we are trying to infer

• ρb: long-term  blank count rate (s−1)
• ρn: long-term net count rate (s−1) (due to analyte in 

unknown)
• ρg: long-term gross count rate (s−1)
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Notation 3: The Measurands -
[Unknown] Population Parameters

• Parameters are needed for sampling from 
population distributions

• µb: number of  blank counts expected during tb

• µg: number of gross counts expected tg

• σ(ρn): standard deviation of long-term net count 
rate (s−1)
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Classical Statistics: 
Relationships Among Population Parameters
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The Reverse Problem



Pacific Northwest National Laboratory 40

The Reverse Problem: 
Using Observed Quantities to Estimate 
Population Parameters (Measurands)
• Classical statisticians

• use Rn to estimate ρn

• use s(Rn) to estimate σ(ρn)
ofter a poor assumption for low numbers of counts

• Bayesian approach shown later



Decision Rules
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Terminology Is a Mess! and This Is Just in English!
 “DL” “MDA” 

Name decision level minimum detectable amount 

What? the lowest useable action level NOT an action level! 

Use: compare measurements to DL Use in planning, advertising or in a statement of 
work for a contractor: “How much will you charge 
to provide counting services with this MDA?” 

When? a posteriori: after the 
measurement is made 

a priori: before the measurement is made  
(but it does “vary with the nature of the sample” – 
NUREG-4007) 

Defined in HPS/ANSI N13.30 HPS/ANSI N13.30 

Currie’s Name critical level, LC detection level, LD 

Ill-defined Names  lower limit of detection, LLD; also, un-fortunately, 
“lower level discriminator,” detection limit, limit of 
detection (“LOD”) 

Turner’s name “minimum significant measured 
activity” 

“minimum detectable true activity” 

ISO 11929 name “decision threshold” “detection limit” 

Spanish name umbral de decision limite de deteccion 

MARLAP name “critical value of []” “minimum detectable amount” or “minimum 
detectable concentration” 

Strom’s name “false alarm level” “advertising level” 
“expected detection capability” 
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<DL <MDA

Always compare a result with DL
Never compare a result with MDA!
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<LC <LD

Always compare a result with LC
Never compare a result with LD!

Translation:
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Measurand versus Measurement Result
• 2 “types” of errors (wrong decisions)

 Is anything there?  (Is any activity present [above blank]?) 

 Yes No 

 
Did I detect 
anything?  (Was 
the result above 
the decision 
level?) 

Yes • made the correct decision 
(no error) 

• “false alarm” 
• false positive 
• I’ve committed a Type I error 

 No • the alarm should have 
sounded, but it didn’t 

• false negative 
• I’ve committed a Type II 

error 

• I made the correct decision (no 
error) 
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Error Terminology
• A Type I error (wrong decision) is falsely concluding there’s 

activity present when no activity is present
• A Type II error is falsely concluding there’s no activity present 

when activity is present
• The probability of a Type I error is called α
• The probability of a Type II error is called β
• The number of standard deviations above zero on the standard 

normal distribution having a probability of α or β of being higher 
is known as the “standard normal deviate,” kα or kβ
• these are k1−α or k1−β in ISO notation

• For α = 0.05 (a 5% chance of making a Type I error), kα = 1.645
• For β = 0.05 (a 5% chance of making a Type II error),  kβ = 1.645
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Characteristics of Many Decision Rules

Nicholson De
(1963)
Sumerling and 
Darby (1981)

“Stapleton’s 
decision criterion”
(in Strom & 
MacLellan 2001)

Nicholson D1, D3 (1963)Uses Blank 
and Sample 
Counts

DLN+1 (in Strom & 
MacLellan 2001)

ISO 11929-1 2000
Currie (1968)
ANSI N-13.30-1996
Altshuler & Pasternak 
(1963)
Nicholson D2 (1963)

Uses Blank 
(background) 
Counts Only

Exact Method or 
Binomial 
Distribution

Assumes or 
permits Var(µ) > NAssumes Var(µ) = N
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Current Decision Level 
(a.k.a. Critical Level)

• α: acceptable probability of making wrong 
decision (Type I error): false alarm or false 
positive
• α is often taken to be 0.05

• kα: value of standard normal deviate for area 
1-α
• k0.05 is 1.645

• ignore non-Poisson uncertainty for simplicity
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Standard Normal Distribution, µ =0, σ = 1
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Cumulative Standard Normal Distribution
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Current “N13.30” Decision Rule
• Nicholson’s (1963) D2 rule; Currie’s (1968) rule; 

ANSI/HPS N13.30-1996; MARSSIM; Equation 
15a, Table 1 of ISO 11929-1:2000

• For α = 0.05

• Expressed as a rate, for non-paired blank:
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Problems with the “N13.30” Decision Rule
• Should be horizontal lines at α′ = α
• 25% wrong decisions at µb ≈ 0.7 count, regardless 

of α
• Actual false positive rate α′ is independent of α at 

very small numbers of counts 
µb = ρbtb << 1

• Even at µb = 10, only asymptotically approaches α
for larger values

• For very small α, no good even at µb = 100!



The Bayesian Approach to the 
Reverse Problem
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The Reverend Thomas Bayes 
1702-1761

• Probability is that 
degree of confidence 
dictated by the 
evidence through 
Bayes’s theorem. --
E.T. Jaynes
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Conditional Probability
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• Identity:

• Bayes’s Rule (Simple form)

• Names:

Bayesian Approach: An Identity

)(
)()|()|(

AP
BPBAPABP =

Factor gNormalizin
Prior  LikelihoodPosterior ×

=

)()|()()|( BPBAPAPABP =
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• Names:

Bayes’s Rule (Simple form)

)(
)()|()|(

AP
BPBAPABP =

Factor gNormalizin
Prior  LikelihoodPosterior ×

=
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• Law of total probability:

• More useful form of Bayes’s rule (denoting 
likelihood by L):

Bayesian Approach: 
Law of Total Probability 1

)(~)|~()()|(
)()|()|(

BPBALBPBAL
BPBALABP

+
=

)(~)|~()()|()( BPBAPBPBAPAP +=
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• Law of total probability:

• Even more useful form of Bayes’s rule:

Bayesian Approach: 
Law of Total Probability 2
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• Some form of prior probability is required!
• The prior probability is what you know before you start
• The prior can have more or less effect on the posterior, 

depending on the precision of the data
• The prior can be subjective
• The prior is the topic of unresolvable arguments

Bayesian Approach: 
The Prior Probability 1

∑
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• The prior can be “nothing”
• even “nothing” can take several forms
• “uniform,” “flat,” or “uninformative” prior: all values of 

B are “equally probable”
• “vague” prior: all values of ln(B) are equally probable…

• The prior can be hard to nail down
• “small values of  blank are more likely than large ones”

Bayesian Approach: 
The Prior Probability 2
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• The measurand or “state of nature” (e.g., count 
rate from analyte) is what we want to know

• The “evidence” is what we have observed
• The likelihood of the “evidence” given the 

measurand is what we know about the way nature 
works

• The probability of the state of nature is what we 
believed before we obtained the evidence

Philosophical Statement of Bayes’s Rule

factor gnormalizin
)measurand()measurand|evidence(

)evidence|measurand(
PL

P =
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• probability density is the probability that x lies 
in an interval between x and x + dx

• probability density is a continuous function

Probability Density
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• P’s are probability densities

• We want to determine the posterior 
probability density

Bayes’s Rule: Continuous Form

Factor gNormalizin
Prior  LikelihoodPosterior
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Use of the Posterior Probability Density
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Bayesian Approach for Blank Only

• Assume “uniform,” “uninformative,” or “flat” 
prior probability density

• Assume the likelihood probability density is a 
Poisson 
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Bayesian Approach for Blank Only

• With a uniform prior, Bayes’s rule inverts the 
likelihood to yield the posterior

• µ becomes a function of N, instead of N being 
a function of µ

• Posterior probability density:
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Posterior Probability Densities for µ 
(conditional on observed values)

Poisson mean, µ
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Bayesian Approach

• Assuming uniform “flat” prior probability 
distribution: any value of N is equally likely

• If N counts observed
• N is maximum likelihood, but N + 1 is expectation 

value:

• variance and standard deviation are simple:
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Ancient References for Bayesian 
N+1 Result Using a Flat Prior
Rainwater, L.J.; Wu, C.S.  Applications of Probability Theory to

Nuclear Particle Detection.  Nucleonics 1(October):60-69; 1947.
Friedlander, G.; Kennedy, J.W.; Miller, J.M.  Nuclear and 

Radiochemistry. 2nd edition. New York: John Wiley & Sons, Inc.; 
1955 & 1963.  The 1963 reference has a section on “Statistical 
Inference and Bayes’ Theorem” (pp. 178-181).

Stevenson, P.C.  Processing of Counting Data. NAS-NS-3109.  
Livermore, California: National Academy of Sciences -- National 
Research Council;  1966.

Little, R.J.A.  The Statistical Analysis of Low-Level Radioactivity in 
the Presence of Background Counts.  Health Phys.  43(5):693-703; 
1982.
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Flat Prior?
• “True” Bayesians are offended by a flat prior

• “You always know more than nothing”
• Strom’s arguments for the flat prior

• it is the best of both worlds, classical and Bayesian
inverting the prior gives a probability distribution that’s not 
available from classical methods

• it obeys Bohr’s correspondence principle: ‘Any new 
theory must correspond to the old theory in the regime 
in which the old theory is known to be valid.’

• it’s what you use on the first experiment
• it does not require one to postulate that everything is 

drawn from the same population
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Quasi-Bayesian Statistics:
Relationships Among Observed Quantities
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• Rn is the same for 
the paired blank 
case, slightly 
different if tb≠tg

• s(Rn) is larger 
because of N+1

• MARLAP 19D.3?
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Why the N13.30 Decision Rule Fails 
at Very Low Background Rates

• an observed background count causes a decision 
of “detected” (∝ µb)

• unless a gross count is observed as well (∝ µb
2)

• independent of α !
• so, for µb < 0.3, α ′ ∝ µb – µb

2

• reason: false assumption that observed values Nb
and Nb

1/2 are good estimates of the mean and 
standard deviation of background
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What Are Alternative Decision Rules?
• “Nb + 1” Decision Rule
• Altshuler & Pasternak (A&P; 1963) / Turner (1995) Eq. 

11.68
• Keith McCroan’s generalization of A&P 

• (= ISO 11929-1:2000)
• James H. Stapleton’s rule
• Nicholson (1963) D1 rule
• Nicholson (1963) D3 rule
• Nicholson (1963) De “exact” / Sumerling & Darby 

(1981) rule
• Bayesian approach
• Rigaud’s (2003) rule (not evaluated here)
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“Nb + 1” Decision Rule
• Bayesian inference of background rate
• Question: If one observes Nb counts, what is the 

expectation value of the background distribution 
that gave rise to this observation (see figure)?

• Bayesian Answer (uniform prior): µb = Nb + 1

• Idea: Rainwater & Wu 1947; Friedlander & Kennedy 1955; 
Friedlander et al. 1963; Stevenson 1966; Little 1982
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Altshuler & Pasternak Decision Rule

• 1963; Turner (1995) Eq. 11.68
• the confidence interval of the net activity
• equivalent to Currie’s detection level (minimum 

detectable count), when the decision level is set 
to zero

• applies to net count rate
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McCroan/MARLAP/ISO Decision Rule

• Generalization of Altshuler & Pasternak

• MARLAP July 2001 Draft; same as ISO (ISO notation):

• Only differs from A&P when count times differ
• notation problem: Strom uses kα where ISO uses k1−α
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An Obvious Argument?

• using both the background and gross sample 
measurements to estimate the background 
increases the power of the test



Pacific Northwest National Laboratory 84

Stapleton’s Decision Rule

• d is an arbitrary number, 0 < d < 1; 0.4 is good
• z is standard normal deviate for this combination 

of  Nb, Ng, tb, tg, and d
• Compare z to kα.to determine whether you’ve 

detected activity at your chosen α
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Nicholson (1963) D1 Decision Rule
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Nicholson (1963) De “Exact” / 
Sumerling & Darby (1981) Decision Rule
• difference of 2 Poissons is distributed as a binomial
• Number of trials, Ntotal = Nb + Ng

• probability of success = tg/(tg+tb)
• the null hypothesis that the sample is blank is rejected if 

a blank sample would have produced a gross count as 
large or larger than the observed 100α% of the time or 
less, that is, if

α≤−
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Test of Decision Rules
• Monte Carlo simulation (Strom and MacLellan 2001)
• 3,141,593 trials at each of 

• 6 values of α, 0.001 to 0.05
• 57 values of µb = ρbtb (0.01 to 50)

• MacLellan’s exact calculation (MacLellan and Strom 
1999) not possible for exact (binomial) or Stapleton’s 
tests or Nicholson’s D1 and D3 rules, because they use 
both Nb and Ng.

• Monte Carlo agrees exactly where comparison is 
possible
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Alpha = 0.02 
Paired Blank (t_b = t_g)
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Alpha = 0.01 
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Alpha = 0.005
Paired Blank (t_b = t_g)
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Alpha = 0.002 
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Alpha = 0.001 
Paired Blank (t_b = t_g)
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Results when tb = tg, Nb < 10
• Nicholson D1, Turner/A&P, Nicholson D3, and 

McCroan/ISO all coincide when tb = tg

• Nicholson D2/Currie/N13.30/MARSSIM is poorest
• “N + 1” rule is much better, but not adequate
• Stapleton’s rule is best, followed by the quartet, 

followed by De/S&D
• No rule is good below Nb = 3; smaller α is worse
• Need further work for different count times, tb ≠ tg

• ANSI/HPS N13.30 under revision; so is MARLAP
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Background
Currie 
(1968)

Altshuler 
& 

Pasternak 
Eq15

Sumerling 
and Darby 

(1981)

Currie 
using 
(N+1)

Nicholson 
(1963)

0 0 (1) 3 5 3 5
1 3 5 6 4 6
2 4 5 7 5 7
3 5 6 7 5 7
4 5 7 8 6 8
5 6 7 8 6 8
6 6 8 9 7 9
7 7 8 9 7 9
8 7 9 10 7 10
9 7 9 10 8 10
10 8 9 10 8 10

Comparison of Decision Rules for α = 0.05

Rntg
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Software Utility under Development
• Freeware Windows 9x/2000/XP 32-bit GUI 

application
• Shows decisions for all 8 rules for any Nb, Ng, tb, tg. 
• Not for public release yet – beta available
• Handles unequal background and gross count times
• Shows the amazing diversity of the decision rules
• Shows weakness of current “N13.30” rule
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Software Utility under Development
PNNL Counting Statistics Utility
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Software Utility under Development
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Monte Carlo Proofs
• Crystal Ball is an add-in to Microsoft Excel

• www.decisioneering.com
• Poisson simulation
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Bayesian Approach for Blank and Gross 
Counts: Joint Likelihood 1

• Assume the likelihood probability densities 
are Poisson 

• Likelihood for Nb and Ng is a function of µb
and µg:

• Not useful because we want Nn, not Ng
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Bayesian Approach for Blank and Gross 
Counts: Joint Likelihood 2

• Likelihood for Nn is a function of Ng,  µb, and 
µn:

• Don Berry, 11/14/1997
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Bayesian Approach: Limitations
• No matter what prior you pick, people will attack you

• “Principle of Flat Priors: Use flat priors as an approximation 
when the prior precision is small in comparison with the sample 
precision” (Berry 1996, p. 354)

• “Using flat priors is conservative when the actual prior evidence 
is consistent with the sample data” (Berry 1996, p. 354)

• Not simple when doing joint probability
• Bayesian results cannot be averaged, added, etc.

• an average or a sum must be recomputed from first principles



Reporting and Recording of 
Measurement Results
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“Censoring” of Data
• Censoring data means changing measured results from 

numbers to some other form that cannot be added or 
averaged or analyzed numerically

• Examples of data censoring
• Left-censoring

changing results that are less than some value to zero
changing results that are less than some value to “less than” some value

• Right-censoring
changing values from the measured result to “greater than” some value

• Rounding
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Why should censoring of data be avoided?

• Censoring means changing the numbers
• In a sense, it is dishonest
• If results are ever 

• summed, 
• averaged, or 
• used for some other aggregate analysis such as fitting a 

distribution, 

censoring makes this 
• difficult, 
• impossible, or 
• simply biased.
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Censoring Examples
• Five results for discharge from a pipe taken over 1 year

• uncensored results: −2, −1, 0, 1, and 2
• sum = 0 (total discharge for the year is 0)
• average = 0 (average discharge for the year is 0)

• Example 1: Set negative values to zero
• censored results: 0, 0, 0, 1, and 2
• sum = 3 (i.e., total discharge for the year is 3; this is not true)
• average = 0.6 (i.e., average discharge for the year is 0.6; false)

• Example 2: Suppose LC = 2. Set all values < 2 to “<”
• censored results: <, <, <, <, and 2
• sum = ? (total discharge for the year cannot be determined)
• average = ? (average discharge for the year cannot be 

determined)
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But Negative Activity Is Meaningless…
• No, it’s not meaningless
• Just like money, subtracting a big number from a small 

number gives a negative value
• You have 100€, you charge 200€, you owe 100€
• 100€ − 200€ = −100€ (your net value)
• this doesn’t mean you can find a bank note for −100€
• stocks go up and down; the end of the year value includes all 

changes, positive and negative
• Negative activity only means that random statistical 

fluctuations resulted in a negative number
• If negative, zero, or less-than values are suppressed, the 

sum is biased.
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More Reasons Not to Censor
• Upper confidence limits of negative, zero, or less-than 

values
• may be small positive numbers
• needed for some applications (e.g., probability of causation)

• Censoring is prohibited by many standards and regulations
• ANSI N13.30-1996: “Results obtained by the service laboratory 

shall be reported to the customer and shall include the following 
items …quantification using appropriate blank values of 
radionuclides whether positive, negative, or zero”

• Many U.S. Department of Energy regulations require reporting 
raw data, calculated results (positive, negative, or zero), and total 
propagated uncertainties

• Decision on actions can be made with uncensored data



Pacific Northwest National Laboratory 111

Rounding Is Censoring
• Rounding a number is 

• changing its value
• biasing the value
• censoring

• Rounding often “justified” by claiming uncertainty
• Uncertainty does not justify changing the answer
• Explicitly state the uncertainty

• Beware of converting units of a rounded number and then 
rounding again!

• Intermediate results and laboratory records should never 
be rounded

• The only time to round is in presentations or 
communications
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Censoring

Report and Record All 
Measurements with No Censoring 

and Minimal Rounding



Back to the Real World…
Decision Strategies
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Coefficients of Variation Using N+1
• a better “guess”
• t denotes tracer

2

b

bt

g

t

2
b

bt
2
g

t

t
2

2

b

b

g

g

2
b

b
2
g

g

n
2

11

11

)(

11

11

)(










 +
−

+

+
+

+

=










 +
−

+

+
+

+

=

t
N

t
N

t
N

t
N

RCV

t
N

t
N

t
N

t
N

RCV



Pacific Northwest National Laboratory 115

Additional CVs

• CV(tracer calibration) = stracer/Atracer

• CV(tracer volume) = stv/Vtracer

• CV(aliquot volume) = saliqout vol./Valiquot

• CV(Type B system performance) = 0.03
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Uncertainty Propagation Formula
• Simple form of uncertainty propagation ignoring 

covariances:

• “Total Propagated Uncertainty,” TPU:

• Hanford uses 2×TPU as a starting point for 
decisions
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Practical Decision Making: A Multi-step 
Process Using Classical Statistics
• If a bioassay result is unexpectedly > 2×TPU, 

several possibilities
• if result not excessively elevated, recount sample for 

4× as long (i.e., 10,000 min for Pu α-spec at Hanford)
• if recount result > 2×TPU, obtain new sample (if 

possible and meaningful) and count new sample
• if new sample result > 2×TPU, decide “detected”

• Result: negligible false positive rate
• Result: minimization of false negative rate
• Moral of the story: you don’t have to decide on 

only one measurement of one sample!
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Bayesian Decision Process
• Depends on whose prior is used

• “Management Prior” or “Optimist’s Prior:” There’s 
no way that there’s activity in this sample (zero and 
low values are heavily weighted)

• “Pessimist’s Prior:” Of course there’s activity in this 
sample, and it’s bigger than you think (high values 
weighted)

• “Ignorant (or Uniform) Prior:” Anything is possible
• Bayesians can recount and resample, too!
• More information is better, but takes time and €€



Consequences of 
Wrong Decisions



Pacific Northwest National Laboratory 120

Do We Need Better Decision Rules?

• False positive bioassays
• needlessly place worker on work restriction
• needlessly alarm worker
• needlessly spend money on unneeded re-sampling 

and analyses
• needless investigations

• False negative bioassays
• not protective of worker
• if later discovered, can destroy trust and 

communication
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Do We Need Better Decision Rules - 2?

• False positive environmental samples
• unnecessary, costly cleanup
• needlessly alarm public
• needlessly spend money on unneeded resampling and 

analyses
• needless investigations
• political consequences

• False negative environmental samples
• not protective of public and environment
• if later discovered, can destroy trust and communication
• political consequences



Averaging to Improve 
Detection Capabilities
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Applicable Under Some Circumstances

• Examples
• Monthly, weekly, or daily samples of discharges from 

a pipe or stack that must meet an annual limit
• Multiple samples from a “risk analysis unit”
• Any time a standard applies to a volume that is large 

compared to sample volume
• Evaluation of “missed dose” from pooled bioassay 

samples
• Why it works: mass or number of samples scales 

with n, counting uncertainty scales with √n
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Air Sample Example (NUREG-1400)
• n is number of samples
• Tb is blank count time
• Tg is gross (sample) count time
• Rb is background count rate
• E is filter efficiency
• TS is sampling time
• F is air flow rate; FTS is volume sampled
• K is counting efficiency (counts s−1 Bq−1)
• MDC is “minimum detectable average concentration”CMD
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Air Sample Example (NUREG-1400)

• and if all efficiencies, flow rates, sample times, 
etc. are equal,
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Method Works to Extract Signal from Noise

• Summing γ-Spectra 
• 46-keV (4%) 210Pb γ-photon not visible or detected by IGe in 

vivo counting of 20 uranium miners
• summing 20 spectra revealed a 46-keV peak (Palmer 1984)
• can’t tell which miner it’s in, but can tell what average and 

total is!
• principle is widely used

• kinetic phosphorimetry for chemical determination of U
• ion cyclotron resonance mass spectroscopy for proteomics
• any multiple-interrogation technique

• Can add counts of same sample made at different times
• e.g., recount

n/1



Probabilistic Background 
Subtraction
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The Problem: 2 Kinds of “Background”

• Question 1: Is there activity in the sample above 
blank? If “no,” stop.

• Question 2: If the answer to Question 1 is “yes,” 
how much of the activity is due to ambient levels 
and how much is due to a particular source (e.g., 
the workplace, release from a nuclear power 
plant)?
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Problem Radionuclides: 137Cs and natU
• Your job: analyze environmental or bioassay samples 

and determine what is “natural” and what is 
occupational or anthropogenic (human-made)

• 137Cs is ubiquitous (fallout and orphan source meltings
at steel mills) as is natU

• Solution(s)
• tricks like 236U as a tracer for “recycled” U
• baseline measurements (not possible after the fact)
• analysis of nearby environment or similar workers
• probabilistic background subtraction (makes the most of what 

you’ve got)
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Example: 137Cs in a Worker
• Intrinsic germanium (IGe) in vivo chest count
• 137Cs is a tracer for Hanford tank waste, a 

mixture of fission products, traces of U and 
transuranics (TRU)

• 137Cs produces much less dose than TRU
• Question: Is the 137Cs from fallout or the 

workplace?
• Answer: make a probabilistic statement about the 

measurement
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Whole-Body Counts of 409 Unexposed Workers
• Average 3.46 Bq (0.094 nCi)
• Chomentowski & Kellerer (2000) smoothing shown
• For a given worker result with its stated uncertainty, one can 

subtract “background” 409 different times (not shown)
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2 Distributions: Worker and Environmental

• Worker: Normal
distribution, 
0.50 + 0.12 dpm/d

• Environmental:
lognormal dist.,
geo. mean = 0.037
dpm/d, GSD = 3.9

0.00 0.54 1.09 1.63 2.18

Environmental
0.1400 0.3200 0.5000 0.6800 0.8600

E8
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Probabilistic Subtraction of Environmental 
U from Single Worker Bioassay

• mean 0.407 + 0.241 dpm/d
• median = 0.436 dpm/d
• 95th %ile = 0.655 dpm/d
• 99th %ile = 0.695 dpm/d

Frequency Chart

 (dpm/day)

.000

.009

.018

.027

.036

0

907

3628

-0.29 0.02 0.34 0.65 0.97

100,000 Trials    98,703 Displayed

Forecast: Net Uranium Excretion
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The Future: A Personal Forecast
• Distributions are the way of the future
• In USA, probability of causation is being tied to 

95th %ile; this will spread to other fields
• Regulatory bodies, competent authorities, will 

begin to require compliance to upper percentiles, 
not means or medians, as “protective” of public, 
workers, and the environment

• Probabilistic methods will become the norm



Non-Bayesian Methods for Evaluating 
Uncertainty in Complex Models
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Non-Bayesian Methods for Evaluating 
Uncertainty in Complex Models

• A variety of methods are available for evaluating 
Type B uncertainty (e.g., model suitability)

• Biokinetic models have been prototyped, but 
environmental models are similar

• Methods include
1.  A “resampling” method

doesn’t mean “obtaining another sample,” but rather, it 
means “sampling subsets of all data”

2.  Updating: Recalculating every time you get another 
data point

3.  Use of multiple radionuclides one at a time



Conclusions and 
Recommendations
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Conclusions 1
• There are severe problem of terminology

• many names for the same concept
• concepts mis-named
• concepts mis-used 
• compare measurements with 

decision threshold LC, not detection level LD

• There are 2 “counting problems”
• Forward problem done well by classical statistics
• Reverse problem only done by Bayesian methods
• Bayesian result: expectation value is N+1, so uncertainty 

is greater

<LC <LD
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Conclusions 2
• There are at least 8 decision rules

• Most use a “Great Leap of Inference:” N is a good 
estimate of ρt & Var(ρt)

• False positive rates are not as claimed for small numbers 
of counts

• ANSI N13.30/MARSSIM/Currie/etc. DL formula 
• yields too many false positives
• fairly good only if counts > 100
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Conclusions 3
• There are much better approximate & exact solutions

• N + 1 rule is better, but not correct
• Altshuler & Pasternak/Turner better (??? stay tuned for 

MARLAP)
• Detailed Bayesian method works if a flat prior is acceptable
• Nicholson’s (1963) and Sumerling’s & Darby’s (1981)exact 

(classical) solution can be implemented - probably the soundest 
theoretical foundation, but very few false positives

• McCroan/ISO 11929 ok for equal count times
• Stapleton’s rule performs the best
• Rigaud (2003) not yet evaluated
• No rule works well at very low counts!
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Conclusions 4
• MARLAP is eagerly awaited 
• More work to be done on software – this shouldn’t be 

so hard!
• Consensus needed
• Bayes’s methods need to be mainstreamed
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Conclusions 5
• Decision strategies (Bayesian and classical)

• You can re-count a sample and decide again
• You can count the other half of a split or re-sample
• Combinations of these lead to essentially no false positives

• An enumeration of the consequences of wrong decisions 
shows that we need the best decision rules we can get

• Detection capabilities: a decision on decision rules needed 
first

• Report and record uncensored, un-rounded 
positive, zero, and negative measurements 
results with uncertainties 
to avoid falsely exaggerating levels

Censoring
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Conclusions 6
• There is great utility in averaging results of 

many samples when appropriate
• If a regulatory guideline applies to a year, average 

samples over a year
• Probabilistic blank and environmental 

background subtraction maximizes 
information content while distinguishing 
human-made signal from environmental 
background

• There exist several non-Bayesian methods of 
uncertainty evaluation in modeling



Pacific Northwest National Laboratory 144

References
• Visit http://bidug.pnl.gov/ (DOE Bioassay and 

Internal Dosimetry Users Group)
• Visit http://www.pnl.gov/bayesian for many 

Bayesian links, including Los Alamos National 
Laboratory (LANL) site and its links



Pacific Northwest National Laboratory 145

Acknowledgement
• Pacific Northwest National Laboratory is 

operated for the U.S. Department of Energy by 
Battelle under Contract DE-AC06-76RLO 1830

• Contact: strom@pnl.gov
The opinions expressed in this presentation are those of Daniel J. Strom may or may not 

represent those of Battelle, the Pacific Northwest National Laboratory, or the U.S. 
Department of Energy



Pacific Northwest National Laboratory 146

• Altshuler B and BS Pasternack. 1963. "Statistical Measures of the Lower Limit of 
Detection of a Radioactivity Counter." Health Physics 9:293-298.

• Berry DA. 1996. Statistics: A Bayesian Perspective. Wadsworth Publishing 
Company, Belmont, California.

• Brodsky A. 1992. "Exact Calculation of Probabilities of False Positives and False 
Negatives for Low Background Counting." Health Physics 63(2):198-204.

• Currie LA. 1968. "Limits for Qualitative Detection and Quantitative Determination.  
Application to Radiochemistry." Analytical Chemistry 40(3):586-593.

• d'Agostini G. 1999. Bayesian reasoning in high energy physics. Principles and 
applications. CERN Yellow Report 99-03. http://www-
zeus.roma1.infn.it/~agostini/index.html, Dip. di Fisica Università "La Sapienza" and 
INFN, Rome.

• Gilbert RO. 1987. Statistical Methods for Environmental Pollution Monitoring. Van 
Nostrand Reinhold, New York.

• Hickey EE, GA Stoetzel, DJ Strom, GR Cicotte, CM Wiblin, and SA McGuire. 
1993. Air Sampling in the Workplace. Final Report. NUREG-1400; PNL-7814, U.S. 
Nuclear Regulatory Commission, Washington, DC.

References



Pacific Northwest National Laboratory 147

• Howson C and P Urbach. 1991. "Bayesian Reasoning in Science." Nature 350:371-
374.

• International Organization for Standardization (ISO). 1995. Guide to the Expression 
of Uncertainty in Measurement. Corrected and Reprinted, 1995. International 
Organization for Standardization, Geneva.

• Jaynes ET. 2003. Probability Theory : The Logic of Science. Cambridge University 
Press, New York.

• Kathren RL. 2001. "Everything But the Counting Statistics: Practical Considerations 
in Instrumentation and Its Selection and Use." Chapter 17 in Radiation Instruments, 
ed. H Cember, pp. 361-384. Medical Physics Publishing, Madison, Wisconsin.

• Little RJA. 1982a. "The Statistical Analysis of Low-Level Radioactivity in the 
Presence of Background Counts." Health Physics 43(5):693-703.

• Little RJA. 1982b. "Hypothesis Tests Based on Counts from Blank and Radioactive 
Samples." Health Physics 42(2):230-231.

• Nicholson WL. 1963. Fixed Time Estimation of Counting Rates with Background 
Corrections. AEC Research and Development Report HW-76279, Hanford Works, 
Richland, Washington.

References



Pacific Northwest National Laboratory 148

• Ott WR. 1995. Environmental Statistics and Data Analysis. CRC Press LLC, Boca 
Raton, Florida.

• Palmer HE. 1984. "In-Vivo Counting of Uranium." in Biokinetics and Analysis of 
Uranium in Man. Proceedings of a Colloquium held at Richland, Washington, 
August 8-9, 1994. USUR-05 HEHF-47, ed. RH Moore, p. I-1-I-29. Hanford 
Environmental Health Foundation, Richland, Washington.

• Strom DJ and JA MacLellan. 2001. "Evaluation of Eight Decision Rules for Low-
Level Radioactivity Counting. PNNL-SA-32868." Health Physics 81(1):27-34.

• Taylor BN and CE Kuyatt. 1994. Guidelines for Evaluating and Expressing the 
Uncertainty of NIST Measurement Results. NIST Technical Note 1297 
http://physics.nist.gov/cuu/pdf/tn1297.pdf, National Institute of Standards and 
Technology, Physics Laboratory, Gaithersburg, MD  20899.

• Thomas J. 1963. Interpretation of Low-Activity Counting. Risø Report No. 70, 
Danish Atomic Energy Commission, Risø, Denmark.

• Turner JE. 1995. Atoms, Radiation, and Radiation Protection. John Wiley & Sons, 
New York.

References



Pacific Northwest National Laboratory 149

• U.S. Environmental Protection Agency (EPA), U.S. Nuclear Regulatory 
Commission (NRC), U.S. Department of Energy (DOE), and U.S. Department of 
Defense. 2003. Multi-Agency Radiological Laboratory Analytical Protocols 
Manual. Draft. http://www.epa.gov/radiation/marlap/about_marlap.htm, U.S. 
Environmental Protection Agency, Washington, DC.

• U.S. Nuclear Regulatory Commission (NRC), U.S. Environmental Protection 
Agency (EPA), U.S. Department of Energy (DOE), and U.S. Department of 
Defense. 2000. MultiAgency Radiation Survey and Site Investigation Manual 
(MARSSIM; http://www.epa.gov/radiation/marssim/). NUREG-1575, U.S. 
Government Printing Office, Washington, DC.

References


