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Abstract
Cancer is a family of diseases, and it should be obvious that different tissues would have 
different susceptibility to radiation-induced cancer. Current radiation risk models assume that, 
while various organs and tissues may have different radiosensitivities, all follow a linear, 
nonthreshold (LNT) dose-response relationship. A more accurate (if more complicated) risk 
assessment would account for different shaped dose-response relationships for each cancer type. 
Since the most compelling risk estimates for radiation carcinogenesis come from human data, 
we examined the human data for bone cancer and liver cancer caused by intakes of radioactive 
materials. Excess bone cancer has been seen in radium workers (primarily female dial-painters 
at the beginning of the 20th century) and plutonium workers at Mayak. Excess liver cancer has 
been seen in patients administered the radioactive thorium compound Thorotrast for x-ray 
studies, and also in plutonium workers at Mayak. In each case, there is evidence for, or at least a 
suggestion of, a threshold dose or dose rate below which there is no excess disease. Since 
intakes of plutonium produce dose primarily to bone and liver, a threshold in the dose-response 
relationship for these cancers would directly impact cleanup standards for DOE sites, and 
radiation protection standards for workers exposed to plutonium. Using state-of-the-art 
computer codes developed at Pacific Northwest National Laboratory, we show that current 
cleanup standards for Pu are too low by a factor of 4, and worker protection standards are too 
low by a factor of 13. This work shows that application of radiation-detriment models that 
incorporate human data for each individual endpoint should be used in radiation risk estimates 
and standards-setting.
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Introduction
• Cancer is a family of diseases

• different tissues have different susceptibility to radiation
• Current radiation risk models assume

• various organs and tissues may have different radiosensitivities
• all follow a linear, nonthreshold (LNT) dose-response 

relationship
• Future radiation risk models

• more complicated
• more accurate
• account for different shaped dose-response relationships for 

each cancer type
• some LNT, others nonlinear, still others have thresholds

• Human data are most compelling
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• where
– P is the probability of occurrence
– n is the number of tumors in an individual
– b is the background incidence rate
– k is the risk per unit dose (Gy-1)
– D is the dose (Gy)
– D0 is the threshold dose (Gy)

• if D0 is 0, then there’s no threshold
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Probable Thresholds
• Human data suggest dose & dose rate thresholds 

for
– Osteosarcoma

• in Ra dial painters (D0 ~ 8 Gy)
• in Pu-exposed Mayak workers

– Liver cancer
• in Thorotrast patients
• in Pu-exposed Mayak workers
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Model-free data visualization using rolling, weighted averages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

Average Skeletal a Dose (Gy)

O
bs

er
ve

d 
Fr

ac
tio

n 
w

ith
 B

on
e 

Sa
rc

om
a

average incidence
LNT fit
LT fit

Bin Size = 49, triangle 
i hti

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.001 0.01 0.1 1 10 100 1000

Average Skeletal α  Dose (Gy)

O
bs

er
ve

d 
Fr

ac
tio

n 
w

ith
 B

on
e 

Sa
rc

om
a

average incidence
LNT fit
LT fit

Bin Size = 49, triangle 
weighting

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

Average Skeletal α  Dose (Gy)

O
bs

er
ve

d 
Fr

ac
tio

n 
w

ith
 B

on
e 

Sa
rc

om
a

Bin Size = 49, 
triangle weighting

Uncertainty bars:
+ 1 S.D.

D0 for LT = 7.73 Gy



Pacific Northwest National Laboratory MPM-A.6 7

Threshold Likely in Radium Workers

• LNT model predicts 12 cases when 1 is observed
• LNT is not likely to be correct; LT is likely correct
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Mayak Workers

Bone Cancer
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Fraction of Effective Dose to Various 
Tissues from Inhalation of Plutonium
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threshold, only 
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Example: Plutonium
• Internal Pu primarily irradiates bone and liver
• If thresholds exist, then only the irradiation that 

occurs above a certain dose rate matters
• Dose, especially committed dose, alone does not 

predict risk in this case
• Must model entire time course of irradiation in 

each tissue
• There’s nothing “linear” about it
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Result: Standards for Human Intakes of 
Plutonium Increase for Same Risk

• Cleanup standards increase by a factor of 4
• environmental standards are based on stochastic effects, i.e., 

limiting 50-year committed effective dose to 0.05 Sv
• Occupational exposure standards increase by a factor of 13

• occupational standards are based on deterministic effects, i.e.,
limiting 50-year committed dose to bone surfaces to 0.5 Sv 
(0.025 Gy for a-particles)

• Higher values for cleanup standards result in 
• less cleanup
• lower cost
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Conclusions
• Different cancer endpoints require different dose-

response models
• Human data show that cancer dose-response 

relationships may be
– LNT (Linear-Nonthreshold)
– LQ (Linear-Quadratic)
– LT (Linear-Threshold)

• Using cancer-specific dose-response models can 
result in more accurate risk estimates

• For plutonium, dramatic savings in cleanup can 
be realized from using the correct models based 
on human data
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