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EVALUATION OF EIGHT DECISION RULES FOR LOW-LEVEL
RADIOACTIVITY COUNTING

Daniel J. Strom* and Jay A. MacLellan†

Abstract—In low-level radioactivity measurements, it is often
important to decide whether a measurement differs from
background. A traditional formula for decision level (DL) is
given in numerous sources, including the recent ANSI/HPS
N13.30-1996,Performance Criteria for Radiobioassayand the
Multi-Agency Radiation Survey and Site Investigation Manual
(MARSSIM). This formula, which we dub the N13.30 rule, does
not adequately account for the discrete nature of the Poisson
distribution for paired blank (equal count times for back-
ground and sample) measurements, especially at low numbers
of counts. We calculate the actual false positive rates that occur
using the N13.30DL formula as a function of a priori false
positive rate a and background Poisson meanm 5 rt, wherer
is the underlying Poisson rate andt is the counting time. False
positive rates exceeda by significant amounts for a < 0.2 and
m < 100 counts, peaking at 25% atm > 0.71, nearly indepen-
dent of a. Monte Carlo simulations verified calculations.
Currie’s derivation of the N13.30 DL was based on knowing a
good estimate of the mean and standard deviation of back-
ground, a case that does not hold for paired blanks and low
background rates. We propose one new decision rule (simply
add 1 to the number of background counts), and we present six
additional decision rules from various sources. We evaluate the
actual false positive rate for all eight decision rules as a
function of a priori false positive rate and background mean.
All of the seven alternative rules perform better than the
N13.30 rule. Each has advantages and drawbacks. Given these
results, we believe that many regulations, national standards,
guidance documents, and texts should be corrected or modified
to use a better decision rule.
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INTRODUCTION

SETTING the decision level for bioassay excreta analyses is
an important function of the internal dosimetry program. If
it is too high, potentially significant intakes will be missed.
If it is too low, resources will be wasted on unnecessary
resampling and reanalyses. The sampled population may
also lose confidence in the program if they suspect the
internal dosimetrist is “fishing” for the right answer.

This research was prompted by the realization that
applying traditional decision rules to very low count rate
data was giving unexpectedly high false detection rates.
As radiation detection technology has improved, back-
ground count rates in alpha spectroscopy have dropped to
levels not anticipated decades ago. One radiobioassay
service contractor routinely reports 0 or 1 count in the
239Pu a-window in 2,500 min, with an average near 0.7.
This phenomenal capability leads to a need to examine
decision rules for distinguishing activity from back-
ground when background is very low.

When counting particles, such as in alpha spectros-
copy for measurement of239Pu, one typically subtracts an
estimate of background counts from the counts of a
sample. The resulting difference or net count value can
then be compared to a statistic called decision level,DL.
If the net count value is greater than theDL, then one
makes the decision that there is activity present above
background. One formula forDL is (HPS 1996)

DLN13.30~Nb, a! 5 kaÎ 2Nb, (1)

whereka is found from the cumulative Normal distribu-
tion:

1 2 a 5
1

Î 2p E
2`

ka

e2x2/ 2dx, (2)

andNb is the observed number of background counts. In
eqn (1), 2Nb is assumed to be a good estimate of the
variance of the net number of counts.

The probability of observingN counts when the
underlying meanm 5 rt, wherer is the underlying Poisson
rate (e.g., counts per second) andt is the counting time (e.g.,
seconds), is given by the Poisson distribution,

Poi~Num! 5
e2mmN

N!
. (3)
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Note that whileN is an integer,m is a non-negative real
number.

It is important to verify that theDL employed is
providing the desired results, and one method of doing
this is suggested in the “Recommendations” section. The
DL is given by

DL~Nn! 5 kaÎsg
2 1 sb

2 5 kaÎNg 1 Nb, (4)

and when there is no analyte activity in the sample, by

DLN13.30~Nb, a! 5 kaÎ 2sb
2 5 kaÎ 2Nb, (5)

as shown in eqn (1). We refer to eqn (5) as the “N13.30
DL” for counts.

An empirical approach to define the decision level
has been used by some organizations. The empirical
approach involves evaluating the actual net activity
distribution for a large set of analytical blanks and
selecting the count or count rate that corresponds to the
selected false detection rate. We expect to examine this
approach in future work as a potential solution to the
difficulties identified here.

METHODS

Two methods were used to determine the actual
false positive ratesa9 when eqn (1) is used for the paired
blank counting problem.

Monte Carlo simulation
The first method was a Monte Carlo simulation. For

each of 57 values ofm (0.01 through 100), a Poisson
distribution was randomly sampled. This value was
stored as the background observation. Then the same
distribution, this time representing an unknown contain-
ing no analyte, was sampled again and stored as the
unknown. ADL was computed using eqn (1), and the net
rate (i.e., unknown—background) was compared to it. If
the net result was greater than or equal to theDL, for that
a, then the decision was “analyte activity was detected
above background.” All such decisions are false posi-
tives, since there is no net activity present. This proce-
dure was repeated 106 times for each mean and for each
of 18 values ofa (0.5, 0.2, 0.1, 0.05, etc., down to 1026).
The results were slightly noisy, but were in exact
agreement with the analytical method described below.

Analytical solution
The cumulative Poisson distribution up throughM is

the sum of the Poisson distribution values:

CumulPoi~M, m! 5 O
N50

M

Poi~N, m!. (6)

The function Trunc(x) returns the integer part of non-
negative real numberx. The false positive rate for a
Poisson meanm and so-called Type I error probabilitya
is given by summing over nonnegative integersN of the
product of two probabilities: the probability of observing
a background value ofN counts given a Poisson mean of

m; and the probability of observing more thanN plus the
expected background counts in the sample count. The
later probability is simply one minus the cumulative
Poisson distribution up to [N 1 DL(N, a)]. In symbolic
terms, we have the actual false positive ratea9 as

a9~m, a! 5 O
N50

`

Poi~N, m!~1 2 CumulPoi

$@Trunc~N 1 DL~N, a!!#, m%!, (7)

a result we term “MacLellan’s exact calculation.”

RESULTS

Actual false positive rates from eqn (5), when
counting blanks, are plotted in Fig. 1. The horizontal axis
is the long-term number of mean background counts,mb,
that one is trying to estimate when counting a reagent
blank. Here,mb 5 rbtb, whererb is the background rate
and tb is the background count time. When subsequent
blanks are counted, of course, any and all decisions that
analyte activity has been detected are wrong decisions,
i.e., “false positives.” If the decision that analyte activity
has been detected is based on the use of the ANSI N13.30
decision level, the actual false positive rates are shown
on the vertical axis for various levels of the acceptable
Type I error ratea. If the ANSI N13.30 formula were
correct, each curve would be a horizontal line equal to
the value ofa, independent of background rate. Clearly,
the N13.30DL formula does not give good actual false
positive rates for low numbers of observed background
counts.

Fig. 1 shows that the actual false positive rate is
essentially independent ofa below 0.3 counts, and ifa #
0.2, this is true almost up tomb 5 1. Fig. 1 also shows
that for values ofa of 0.1 or less, the claimed false
positive rate, that is,a, is not even achieved with a
background valuemb of 100! For very tiny values ofa,
the claimed false positive rate is not even close toa. For
a equal 1026, the false positive rate at 100 background
counts is 25.13 1026. For a # 0.1, the maxima of the
curves are about 0.25, and occur nearmb 5 0.7 to 0.72
counts, depending only weakly on the value ofa. In the
interval 0.3# m # 1.3, the false positive rate is above 0.2
regardless of the value ofa.

The false positive rate for very low background rates
using the N13.30DL is due almost entirely to the
probability of observing zero background counts. Re-
gardless of thea value applied, the square root of zero is
zero, and theDL is zero. Therefore, any observed count
is interpreted as “detected.” For very low background
rates, e.g., 0.01, one observes zero in about 99% of cases
and one in the other 1% of cases. Similar rates pertain for
a blank about which one is trying to make an inference.
Thus for those 1 in 100 blanks for which one observes 1
count, the probability is 99% that the paired background
measurement will have been 0, and that a false positive
decision will be made. The false positive rate is then
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0.99 3 0.01, or approximately 0.01. For very low
background rates the probability of observing a false
positive with the N13.30 rule is approximately equal to
the probability of observing one or more counts in the
counting period.

APPLICATIONS OF THE TRADITIONAL
FORMULA WITHOUT CONSIDERING

ITS LIMITATIONS

Eqn (1) was popularized by, and is generally as-
cribed to, Currie (1968). It appeared earlier in a more
general form for net count rateRn (as opposed to net
counts) with count times not necessarily equal, as Rule
D2 in Nicholson (1963),

DLN13.30~Rn, a! 5 kaÎNb

tb
S1

tb
1

1

tg
D , (8)

wheretb is the background count time andtg is the gross
count time. This equation has appeared in one form or
another in countless publications including ANSI/HPS
N13.30-1996 and MARSSIM (Brodsky 1986; Currie
1968; Currie 1984; Health Physics Society 1996; Hickey
et al. 1993; Lochamy 1976; Strom and Stansbury 1992;
U.S. NRC 1997). Given this history, we have arbitrarily
chosen to dub eqn (8) the “N13.30” decision rule for
count rate.

The problem arose from the assumption that one has
a well-known estimate of the mean and standard devia-
tion of the background. With low background rates one

does not have a good estimate of either one. Currie’s
treatment of the “paired blank” (equal background and
gross count times) case attempted to account for the
increased uncertainty in the background when it was
counted for only as long as the sample (as opposed to the
well-known blank). But when the background rate is
estimated from a measurement that is below the long-
term mean, the use of Currie’sDL (termed “critical
level,” LC, in his 1968 paper) causes a large number of
false positive decisions that are not offset by the fewer
false positive decisions that result when the background
rate is estimated from a measurement that is above the
long-term mean. In particular, if the background is
estimated from an observation of zero, one must decide
that any gross countNg $ 1 results in a decision of
“analyte activity has been detected above background.”

Currie stated on page 22 of his NUREG document
(1984) that an assumption underlying the N13.30DL
rule is that the estimated net signal is an independent
random variable having a known distribution. Thus,
knowing (or having a statistical estimate for) the standard
deviation of the estimated net signal, one can calculate
theDL given the distribution and alpha. He also stated on
page 49 of the same document that if there are at least 5
counts in the background estimate, use of the Poisson
variance as the estimate of the population variance is
valid. Applying the rule to very low background count
rates violates Currie’s own assumptions for theDL.

Both Currie (1968, 1984) and HPS (1996) acknowl-
edge limitations at low numbers of counts, but do not

Fig. 1.Actual false positive ratea9 for the N13.30 decision rule as a function of background count meanmb for 18 values
of a priori false positive ratea. A perfect decision rule would result in horizontal lines with constanta9 5 a.
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give any idea how good (or bad) the formula might be at
low numbers of counts. Furthermore, a commonly-held
notion that a Poisson distribution is well-approximated
by a Normal distribution atm $ 30 does not explain our
results even atm of 100 for small values ofa. Even at
higher background levels, the N13.30DL gives a false
positive ratea9 . a because the estimate of the mean
(and therefore the estimate of the variance) of the
distribution is biased low. The factor by whicha9 using
the N13.30DL overestimatesa is particularly large for
small a.

SEVEN OTHER DECISION RULES

Following our conclusion that the N13.30 decision
rule does not give a good estimate of false positive
results, seven other decision rules were investigated.

Most probable value of mean and variance
Rainwater and Wu (1947) showed that the most

probable values of the mean and variance are not the
observed value of the mean, but a value larger than the
observed value. Although not intuitively obvious, an
example was given for clarification. If zero is observed,
the mean is not necessarily also zero; therefore, the
average value of the mean that produces zero observa-
tions must be greater than zero, and the most probable
value of the mean is larger than the observed value.

One formal way of addressing this is to use a
uniform (uninformative) Bayesian prior probability dis-
tribution, which yields the result that the expectation
value of background whenNb counts are observed is
Nb 1 1 (Friedlander and Kennedy 1955; Friedlander et
al. 1963; Stevenson 1966; Little 1982). The variance is
alsoNb 1 1. The Bayesian posterior probability density
functions for observations ofNb 5 0, 1, 2, 3, and 4 are
shown in Fig. 2. For each observation, the maximum
likelihood value, i.e., the mode, isNb, as predicted by
classical statistics, but the expectation value, i.e., the
mean, isNb 1 1.

The uniform prior Bayesian approach leads to a
decision level for the net count rate of

DLN11~Rn, a! 5 kaÎ~Nb 1 1!

tb
S1

tb
1

1

tg
D . (9)

If the observed valueNb is much greater than one, the
distinction betweenNb andNb 1 1 is not important. One
approach we took was to modify the N13.30 rule by
usingNb 1 1 as the estimate of the variance instead of
Nb.

Approach of Altshuler and Pasternak, and Turner
The decision level may also be defined in terms of

the standard deviation of the net analyte activity. In his
book Atoms, Radiation, and Radiation Protection,
Turner (1995) describes a decision level similar to one
originally proposed by Altshuler and Pasternack (1963).
In this process, the decision is made on the basis of the

difference in the gross (Rg) and background (Rb) count
rates, the net count rateRn:

Ng

tg
2

Nb

tb
5 Rg 2 Rb 5 Rn 5 kaÎsgr

2 1sbr
2

5kaÎRn 1 Rb

tg
1

Rb

tb
. (10)

Here, sgr
2 and sbr

2 are the variances of the gross and
background count rates, respectively. This is equivalent
to Currie’s detection level (minimum detectable count),
when the decision level is set to zero. Solving the
expression forRn gives

DLA&P/Turner~Rn, a! 5
ka

2

2tg
1

ka

2 Îka
2

tg
2 1 4RbS1

tb
1

1

tg
D .

(11)

Whentb 5 tg, the minimum significant count differ-
ence,D1, is

D1 5 kaÎ 2NbS ka

Î8Nb

1 Î1 1
ka

2

8Nb
D . (12)

McCroan’s rule
McCroan‡ has developed a rule similar in form to that

of Altshuler and Pasternak/Turner given in eqn (11), that
can be derived from Nicholson’s D3 rule (eqn 22, below):

DLMcCroan~Rn, a! 5
ka

2

2tb
1

ka

2 Îka
2

tb
2 1 4RbS1

tg
1

1

tb
D . (13)

‡ Personal communication, Keith McCroan to Daniel J. Strom, 1
September 1999.

Fig. 2. Posterior probability densities for the background count
meanmb 5 rbtb for observations ofNb 5 0, 1, 2, 3, 4, and 5 counts,
derived using Bayes’s theorem and a uniform (uninformative)
prior. Formulas for each probability density are given in the
legend. In each case, the most probable (maximum likelihood)
values ofmb are equal toNb, but the expectation values (means of
the posterior distributions) are equal toNb 1 1.
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Binomial distribution
Nicholson (1963, 1966) and Sumerling and Darby

(1981) describe equivalent processes for determining a
decision level using the binomial distribution. As de-
scribed in Sumerling and Darby (1981), if the back-
ground is not well known, the observation on the sample
may be compared with the background observation,Nb

counts in timetb, to see if they are consistent with any
single true count rate. They, and others, argue that using
both the background and gross sample measurements to
estimate the background increases the power of the test.

The probability of observing valueNg, when the
mean of the quantity being measured ismg, is given by
the Poisson distribution

Poi~Ngumg! 5
e2mgmg

Ng

Ng!
. (14)

The joint probability of making independent observa-
tionsNg andNb when the respective means aremg andmb

is given by

P~Ng, Nbumg, mb! 5
e2mgmg

Ng

Ng!
z
e2mbmb

Nb

Nb!
. (15)

Transforming to new variablesNg andNtotal 5 Ng 1 Nb,

P~Ng, Ntotalumtotal, Q! 5
e2mtotalmtotal

Ntotal

Ntotal!
SNtotal

Ng
DQNg

~1 2 Q!Ntotal2Ng, (16)

where mtotal 5 mg 1 mb and Q 5 mg/(mg 1 mb). The
probability of observingNg conditional on a particular
value ofNtotal is given by

P~NguNtotal, mtotal, Q! 5
P~Ng, Ntotalumtotal, Q!

P~Ntotalumtotal, Q!

5 SNtotal

Ng
DQNg(12Q)Ntotal2Ng

(17)

Here, the binomial coefficient is denoted by

SNtotal

Ng
D 5

Ntotal!

Ng!~Ntotal 2 Ng!!
.

This distribution is known as the binomial distribution
with probability of successQ. If the sample is blank and
Ng and Nb are both measurements of some unknown
background with true count raterb, thenQ 5 Q0 where

Q0 5
rbtg

rbtg 1 rbtb
5

tg
tg 1 tb

. (18)

For example,Q0 5 1⁄2 when tg equalstb.
The inference about the presence of analyte activity

in the sample is based on the conditional distribution of
Ng givenNtotal. Hence, the null hypothesis that the sample
is blank is rejected if a blank sample would have

produced a gross count as large or larger than the
observed 100a% of the time or less, that is, if

O
i5Ng

Ntotal SNtotal

Ng
DQ0

i ~1 2 Q0!
Ntotal2i # a. (19)

To use this rule in practice, one may simply compute the
function on the left hand side of eqn (15) to give the
probability that the observedNg was drawn from the
same population asNb for a givenQ0.

Nicholson uses eqn (19), which he terms his “De
rule,” as the basis of a “randomized decision rule.” For
the smallest value ofNg for which eqn (19) is true,
Nicholson (1963, p. 25) modifies the result of this
decision rule by means of “the academic device” of
flipping a biased coinafter the rule has been applied, to
adjust the actual false positive ratea9 to be exactlya in
the long run. The results in this paper use Sumerling and
Darby’s form of the decision rule.

Nicholson also shows that, in the limit of large
numbers of counts, eqn (19) is equivalent to his D3 rule
(eqn 22, below).

Stapleton’s decision criterion
Stapleton§ has proposed a criterion for estimating

the standard normal deviate,zStapleton, of a set of observa-
tionsNb, tb, Ng, tg, that includes an arbitrary parameterd,
0 , d , 1:

zStapleton~Ng, tg, Nb, tb, d! 5 2
ÎNg 1 d

tg
2 ÎNb 1 d

tb

Î1

tg
1

1

tb

.

(20)

If zStapleton. ka then one concludes that analyte activity
has been detected. Stapleton has recommended that the
value ofd be 0.4 fora 5 0.05.

Nicholson’s D1 rule
Nicholson (1963) gives two other decision rules for

the net count rate. Nicholson’s D1 rule (1963) iska times
the standard deviation of the net count rate:

DLNicholson D1~Rn, a! 5 ka ÎNb

tb
2 1

Ng

tg
2 . (21)

Nicholson states that D1 uses the “obvious unbiased esti-
mate of the variance with no restriction on”rn 5 rg 2 rb.

Nicholson’s D3 rule
Nicholson’s D3 rule (1963) iska times the sum of

the counts divided by the product of the count times:

DLNicholson D3~Rn, a! 5 ka ÎNb 1 Ng

tbtg
. (22)

§ Personal communication regarding Stapleton, Keith McCroan to
Daniel J. Strom, 1 September 1999.
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Nicholson states that D3 “optimally weights information
aboutrb in both tb andtg,” but that its variance estimate
is only unbiased if the underlying net rate (due to analyte
activity in the sample),rn 5 0.

McCroan\ derived eqn (13) from Nicholson’s D3
rule.

COMPARISON OF EIGHT DECISION RULES

For the paired blank case (tb 5 tg), actual false
positive ratesa9 were evaluated for each of the eight

decision rules using the Monte Carlo simulation method
described for the N13.30 decision rule. Six values ofa
(0.05, 0.02, 0.01, 0.005, 0.002, and 0.001), 57 values of
mb (0.01 to 50) were used in 3,141,593 iterations each.
The results are shown in Figs. 3–8. Note that while
decision rules Nicholson D1, Turner/A&P, Nicholson D3,
and McCroan coincide for the paired blank case, they
may be distinct when background count time differs from
gross count time.

We were not able to implement MacLellan’s exact
calculation, eqn (7), for exact (binomial) or Stapleton’s
tests or for Nicholson’s D1 and D3 rules, because those
tests use bothNb andNg.

For the N13.30 rule usingNb 1 1 as the estimator of
the background mean and variance, the nominala values

\ Personal communication, Keith McCroan to Daniel J. Strom, 3
February 2000.

Fig. 3. Actual false positive rates (linear vertical scale) for eight
decision rules fora 5 0.05 as a function of background count
mean in the paired blank case. Decision rules Nicholson D1,
Turner/A&P, Nicholson D3, McCroan, and Stapletond 5 0.4 all
coincide fora 5 0.05.

Fig. 4. Actual false positive rates (logarithmic vertical scale) for
eight decision rules fora 5 0.02, as a function of background
count mean in the paired blank case. Decision rules Nicholson D1,
Turner/A&P, Nicholson D3, and McCroan (“4 others”) all coincide
for a 5 0.02.

Fig. 5. Actual false positive rates (logarithmic vertical scale) for
eight decision rules fora 5 0.01, as a function of background
count mean in the paired blank case. Decision rules Nicholson D1,
Turner/A&P, Nicholson D3, and McCroan (“4 others”) all coincide
for a 5 0.01.

Fig. 6. Actual false positive rates (logarithmic vertical scale) for
eight decision rules fora 5 0.005, as a function of background
count mean in the paired blank case. Decision rules Nicholson D1,
Turner/A&P, Nicholson D3, and McCroan (“4 others”) all coincide
for a 5 0.005.
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consistently underestimate the observed false positive
rates for allmb . 2. At background means less than 1, the
rule overestimates the false positives. This test is consid-
ered inadequate.

For the Nicholson/Sumerling and Darby binomial
decision rule, the nominal alpha values overestimate the
observed false positive rates for all background means,
and grossly overestimate the false positives formb , 10.
That is, using this decision rule results in a far smaller
proportion of false positives thana. This test is consid-
ered inadequate for low background counting.

The Altshuler & Pasternak/Turner decision rule
produces false positive rates that are relatively unbiased
estimates ofa down tomb 5 4 for the lowesta evaluated

(0.001), and down tomb 5 2 with a 5 0.05. Formb , 2,
using the Turner decision rule results in a far smaller
proportion of false positives thana. For equal count
times, Nicholson’s D3 rule produces identical results, but
not for unequal count times. These rules are almost as
good as Stapleton’s, especially for larger values ofa and
larger values ofmb.

Nicholson’s D1 and D3 rules give the same results as
A&P/Turner and McCroan for the paired blank case.
When the gross count time differs from the background
count time, most rules give different results that are not
presented here. No cases have been observed where the
McCroan rule differs from Nicholson’s D3 rule, which
leads to the need for further investigation. These rules are
almost as good as Stapleton’s, especially for larger
values ofa and larger values ofmb.

RECOMMENDATIONS

None of the rules evaluated provides an unbiased
estimate of the false positive rate at all background
meansmb. The N13.30 rule gives the poorest results. The
computationally simpleNb 1 1 rule gives much better,
but not adequate results. The Nicholson’sDe/Sumerling
and Darby rule based on the binomial distribution never
overestimates the actual false positive rate, but it pro-
duces the most false negative results for small numbers
of counts. The quartet of Nicholson’s D1 and D3, A&P/
Turner, and McCroan produce the fewer false negatives
in some ranges of counts than the Nicholson’sDe/
Sumerling and Darby rule, and Stapleton’s criterion with
d 5 0.4 produces fewer still for the smaller values ofa.

For all of the decision rules except the N13.30 and
the N 1 1 rules, a is much greater than the actual
proportion of false positives at all but the very lowest
background means. We are therefore presented with the
conundrum in that our lowest background detectors may
not be the most sensitive!

We found that Stapleton’s rule is best overall for
a # 0.05 for low expected background counts. The
quartet mentioned above did not perform as well at the
lower numbers of counts, but were acceptable above 10
counts, and acceptable at lower numbers of counts for the
larger values ofa. The N13.30 rule does not perform
acceptably for anything but the highest numbers of
counts, and never works well for small values ofa.

Based on these findings, we recommend that stan-
dards organizations such as the HPS/ANSI N13.30 com-
mittee reconvene to consider modifications to their rec-
ommended decision rules.

Furthermore, we recommend that laboratories mon-
itor their method’s actual false detection rate for blank
samples to verify that the expected value is being met, no
matter which decision rule is used.

Future work will investigate other existing decision
rules, the effect of varying the background and sample
count time ratios, Bayesian approaches, the use of preset
counts rather than preset count time, and the effect on
minimum detectable activity determinations.

Fig. 7. Actual false positive rates (logarithmic vertical scale) for
eight decision rules fora 5 0.002, as a function of background
count mean in the paired blank case. Decision rules Nicholson D1,
Turner/A&P, Nicholson D3, and McCroan (“4 others”) all coincide
for a 5 0.002.

Fig. 8. Actual false positive rates (logarithmic vertical scale) for
eight decision rules fora 5 0.001, as a function of background
count mean in the paired blank case. Decision rules Nicholson D1,
Turner/A&P, Nicholson D3, and McCroan all coincide for
a 5 0.001.
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