NI CHD L. SonA763

[

L AEC 'RES{EARCH AND 3%

“h. %

ATOMIC
ICHLAND,;,'WASHINGT_QN




HW-76279

, : UC-32, Mathematics
,r and Computers
oo (TID-4500, 24th Ed.)

-“‘}

T

FIXED TIME ESTIMATION OF COUNTING RATES
WITH BACKGROUND CORRECTIONS

o

. By . 3
, T TETUTTE NN
:' r\_;: . A R A

f W. L. Nicholson
] . . .

Applied Mathematics Operation
“;5 Hanford Laboratories
]

September 1963

HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON

Work performed under Contract No. AT(45-1)-1350 between the
Atomic Energy Commission and General Electric Company

Printed by /for the U. S. Atomic Energy Commission

Printed in USA. Price $ 3.00 Available from the
Office of Technical Services
Department of Commerce
Washington 25, D.C.

L g g

0y

-

K ATCEN




II.
I1I.
Iv.

VI.

VII.

O w

il

TABLE OF CONTENTS

INTRODUCTION.
RECOMMENDATIONS .
STATISTICAL CONCEPTS .
HYPOTHESIS TESTS.
Normal Approximatiqn Decision Rules - Dl’ D2, D3
Uniformly Most Powerful Similar Decision Rule - De
Comparison of Power Surfaces .
Asymptotic Power Surfaces
CONFIDENCE INTERVAL ESTIMATES
Intervals Based on Normal Approximation - Il’ I

4
Asymptotic Expected Lengths .

THE IMPORTANCE OF GOOD BACKGROUND ESTIMATION .

Hypothesis Testing

Confidence Intervals .

Multiple Use of Background Estimates .
ACKNOWLEDGMENTS.

REFERENCES

APPENDIX

TABLES OF CRITICAL POINTS AND RANDOMIZATION
PROBABILITIES FOR UNIFORMLY MOST POWERFUL
SIMILAR RULE D . .

GRAPHS OF POWER‘ SURFACE SECTIONS FOR RULE D3 .
MATHEMATICAL DERIVATION OF RULE I .

TABLES OF CONFIDENCE INTERVAL END POINTS
FOR RULE I .

TABLES OF EXACT CONFIDENCE COEFFICIENTS
AND EXPECTED LENGTHS FOR RULES I AND I

GRAPHS OF LIMITING POWER SURFACE SECTIONS
FOR RULES D 1’ D2, DS’ ANDD . Coe
GRAPH OF LIMITING NORMALIZED EXPECTED LENGTH
FOR RULES I and I

HW-76279

Page

10
16
16
24
26
31
33
34
37
39
39
45
49
56

o7

>



-1- HW-76279

FIXED TIME ESTIMATION OF COUNTING RATES .
WITH BACKGROUND CORRECTIONS

I. INTRODUCTION

A routine method for estimating the total radioactivity in a long-
lived sample involves monitoring the sample with a detector for a fixed
time period t, recording the total number of counts x, and calculating
a counting rate x/t. A background counting rate estimate y/s is also
calculated for the same detector from a background-count y recorded
over a fixed time period s. The background estimate, which supposedly
represents all spurious activity, is subtracted to give the sample net

counting rate estimate

E’:x/t—y/s. (l)

The interpretation of the estimate C must now be considered. Let C be the
true net counting rate of the sample and let B be the true background
counting rate during the period over which the sample was counted. So,
x/t is an estimate of C + B, and y/s is an estimate of B. Within this

framework several questions are pertinent. The first of these is

Q.- Does the estimate ¢ imply that C>0; i.e., does the net sample
counting rate imply the existence of '""something' in the sample

in addition to background activity ?

An answer of '"NO'" to question Ql actually is a decision that C is less

than some nominal threshold Co' The second of these logically follows:

Q2. What is the threshold CO; i.e., what is the minimum C which
can be detected as positive a reasonable portion of the time ?
Here, ''reasonable'' is open ‘to definition by the economics of

the situation.
An answer of "YES' to question Ql leads to the refinement:

QB' How good an estimate of C is €, and are there others that are

better in some sense?
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This paper considers the answers to the above questions and related
topics for the case of appreciable background. In terms of expected total
net sample count tC and expected total background count tB in the saniple

gross count, appreciable background means

0< (tC)/(tB)l/z < 15.

The specific recommendations in the form of hypotheses testing
and confidence interval estimation rules for answering questions Ql’ QZ’
and Q3 are stated in Section II. A short discussion of the statistical con-
cepts used in the paper is contained in Section III. Those interested only
in the application and interpretation of the rules should read Sections I,

II, and possibly III, plus referenced appendix material. The investigations
supporting these recommendations are the subjects of Sections IV, V, and

VI plus additional appendix material.

To answer the above questions some information about the distri-
butional properties of x and y must be available. In the sequel we assume
that the two counts x and y are random observations on Poisson distribu-
tions* with mean value parameters (C + B)t and Bs, respectively. With
the se assumptions, x/t is an unbiased estimate of C + B with variance

(C +B)/t, and y/s is an unbiased estimate of B with variance B/s.

Questions Qland Q2 can be answered within the framework of

classical statistical theory by setting up the null hypothesis Ho that C = 0

The assumption that x is a Poisson distribution random quantity imposes
the restriction that the total counting period t is much less than the half-life
t1/2 of the sample. If this condition is not satisfied. the Poisson variance
(C + B)t appreciably overestimates the actual variance of x, which in turn,
leads to unnecessarily broad confidence statements. For example, with
t =0.19 t1/2, confidence intervals based on the Poisson distribution are
about 10% wider than the correct ones, and with t = 0.43 t/2 they are
about 25% wider than the correct ones.
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and testing it against the composite alternative hypothesis HC that C > 0.
For any decision rule D for deciding between HO and HC’ the power function
provides the answers to Ql’ and Qz. In Section IV, four decision rules

Dl, D2, D3, and De are compared in detail. The first three of these rules
are:

. 1/2
Dl' Decide HC

Otherwise, decide H is true.

is true ifE'>n [x/t +y/s ]

. 1/2
D2. Decide HC

Otherwise, decide H is true.

is true if ¢ > n, (Yt + 1/s)y/s)] (2)

Decide HC is true if ¢ > n, [(x+y) /(st)]l/2

Otherwise, decide Ho is true.

Here, n, is the 100(1-a) percentile of the unit normal distribution. Cus-
tomarily an investigator uses a 1%, 5%, or 10% level of significance decision
rule to test the null hypothesis HO. The corresponding n, values are

= 2.326, n = 1.645, and n = 1. 282, respectively.

0.05 0.10
All three of the rules in (2) are based upon asymptotic theory;

Ng.01

specifically, that for large expected value in the Poisson distribution is
approximately normal. In the limit as (C + B)t and Bs approach infinity,
¢ divided by the bracketed quantity on the right of each inequality in (2)
has a unit normal distribution, so the rules all have exactly 100a% sig-
nificance levels. In Section IV the behavior of the rules is investigated
for finite expected values. Previous observations of a number of authors,
e. g.(l’ 2), concerning the goodness of the normal approximation to the
distribution of the difference of the two Poisson variables for small
expected values are substantiated. This goodness carries over to the

distribution of the decision rules in (2).

Rules D 1 and D2 are common methods of answering questions

Q1 and Q2 familiar to users of counting instruments. D3, while probably
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not so familiar, turns out to be more robust than the others. Power

surface calculations show that the stated D, level of significance is

3
closest to the true one over a reasonable range of B, t and s values.

The differences in Dl’ D2, and D3 are in the handling of the

variance estimate of C . Dl uses the obvious unbiased estimate with
no restriction on C, while D2 and D3 variance estimates are only unbiased
if C = 0. The advantage of the D3

the information about B in both x and y. The D

estimate is that it optimally weights
1 approach is reasonable
for confidence interval estimation, but clearly conservative, and not

(3)

in the Neyman and Pearson spirit for hypothesis testing.

The fourth rule De’ defined in Section IV, is the uniformly most
powerful similar decision rule based on similar critical regions so that
the significance level is always 100a% independent of the true background
counting rate B. The exact rule De is more complicated to use than the
normal approximation rules. Tables of critical points and randomization

probabilities are included in Appendix A.

Power surfaces of Dl’ D2, D_ and De are plotted in Figures 2,

3, and 4 for selected values of p = t/g and B. These show the robustness
of D3 and compare Dl’ D2, and D3 with the exact rule De' An extensive
set of D3 power surface sections is graphed in Appendix B. The limiting
power of all four rules as (C + B)t and Bs approach infinity is also derived

in Section IV. Graphs of the limiting power surface sections are included

in Appendix E.

Section V considers the answer to question Q3 from the standpoint
of confidence interval estimation. Two different confidence interval
rules I1 and I4 for C are described and compared in detail. The approximate

100(1-2)% confidence forms of these rules are:

Il' Decide that C satisfies

2]1/2 211/2;

E-na/z[x/t2+y/s §C§E'+ Ny /o [x/t2+y/s




(]

-5- HW-76279

I,. Decide that C satisfies

Ly, 0,0 /tgCcU,(xy,p,a)/t.

For the customary confidences of 90%, 95%, and 99%, the na/2 values
are ny e = 1.645, Ny 025 = 1.960, and Ny 005 = 2.576, respectively.

The L4 and U4 endpoint functions of 14 are tabled in Appendix D for
appropriate x,y,p = t/s and 1-a values. Both the rules are based on the
normal approximation to the Poisson distribution, so the stated confidence
coefficients are not exact.* Rule Il is the symmetric confidence interval
formulation of rule D1 of (2). Rule 14 is based on a joint confidence region
for B and C approach. The mathematical details of the argument constitute

Appendix C.

In Section V the two rules are compared with respect to exact
confidence coefficients and expected interval lengths. Tables are con-
tained in Appendix D. Rule 14 is seen to be robust against the departures
from normality resulting from very small expected total counts. An
asymptotic length formula for both rules when (C + B) t and Bs are large

is derived in Section V. A graph is included in Appendix E.

The importance of the background estimate y/s for good inference
is considered in Section VI. Graphs show the effecton both power of
hypothesis tests and expected length of confidence intervals of varying
the background information parameter p = t/s and the expected total back-

ground count Bt. Asymptotic results are also included.

In the first half of Section VI it is assumed that a background
estimate is only used once. The remainder of the Section considers

the average value characteristics of rules when the same background

* It is not possible to construct an exact confidence interval for C (except
in the trivial instance when it is known that b = B) based on Poisson vari-
ables x and y. Alternative approaches do exist. Probably the best solu-
tion to the whole area of statistical inference based on a few counts is to
change the fundamental counting procedure from one of monitoring the
random number of counts in a fixed time period to one of monitoring the
random time to accumulate a fixed number of counts. This latter pro-
cedure based on random time does not suffer from the discreteness limi-
tation of the Poisson distribution. Statistical techniques for random time
counting are not discussed here. A discussion of random time procedures
and related sequential techniques is included in Reference(4).
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estimate is used to correct a number of different sample gross counts.

II. RECOMMENDATIONS

The mathematical and numerical investigations into the three ques-
tions Ql’ Q2, and Q3 raised in Section I are reported in detail in later
sections of this paper. The specific recommendations resulting from
this work are presented below in the form of several rules of thumb.
These recommendations are meant to cover a gamut of possible combi-
nations of expected background count tB, sample to background countin~g
times ratio p and level of significance 100a% (or confidence coefficient
l-a). As such they will have deficiencies in specific circumstances.

If a priori information is available concerning tB (a range, or upper,

or lower bound, for example), a specific set of p values is under con-
sideration, and/or a particular « is to be used, detailed reading of later
text material will undoubtedly produce a rule superior to the rules of

thumb below.

The choice of a hypothesis testing rule to answer question Ql
could best be based on p, sB, and the discrepancy between stated 100a%
level of significance and true level of significance that the experimenter
can tolerate. Since sB is unknown, y is substituted as a choice parameter.
The rule D3 has the smallest such discrepancy if p < 1(Table I). The
discrepancy is positive and decreases as tB increases for fixed p. Power
surface sections (Appendix B) suggest the following rule of thumb:

0.10]*

RT I For stated @ equal to ¢0.05) use decision rule D

when p < 1 and
0.01 -

3

5 51
y > <10 ; use exact decision rule De when p > 1 and/or y < IOJ, .
15 , |15

In the remainder of the statement, use the top quantity in each bracket
with 0. 10, the second with 0.05, etc.
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In using RT1 almost all applications of D3 when Ho is true will have the
0.10 0. 121 ~,
true type I error @ satisfying ¢0.05 < a < ¢0.07) . This discrepancy

0.01 0.02

range would seem to be acceptable under most conditions. Tighter or
: looser bounds on the discrepancy are best accomplished by increasing
' or decreasing, respectively, the y bound for use of D3.

The threshold C0 of question Q2 is definable in terms of power
(Section III). Thus, C0 as a function of 1 - B is the smallest expected
net sample counting rate for which a particular decision rule (with speci-

fied level of significance) has power not less than 1 - 8. For large

x and y the asymptotic power function (28) and power curves of Appendix B

suggest the following rule of thumb:

RT2: For stated 100a% level of significance, power (1 - B) >1/2,
and expected background contribution to sample count tB

the threshold CO for decision rule D3 satisfies

C, i'VtB(l + p) (na + nB)/t.

: Equality is approximately satisfied for tB > 50.
3 §.;’.ft -
The asymptotic curves of Appendix E, Figures E. 1, E. 2, and E. 3, give

ﬁ.t.he equality form of this threshold relationship. For finite x and y the

&% inequality is strict. The approach to the limiting form for fixed p is
depicted in the families of power sections of Appendix B. In each

: éiire the limiting power section is the straight line on the far left of

" the family of curves. The first curve to the right of the straight line

co}responds to tB = 50.

A common practice when different counting systems are being

.compared is the basing of the selection of the best system on the "'signal
té’ oise ratio', or, in previously defined symbols, the ratio C/B. The

present investigation suggests the alternative rule of thumb:

R

‘RT’Z: The probability of detecting a net sample counting rate C in

the presence of a known average background counting rate B

based on a counting period of time t increases with (tC) /(tB)l/z.
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If the expected background rate is unknown and estimated over
a period of time s the detection probability increases with

1/2
(tC) /[tB(1 + )1/ 2.

Our rule of thumb RT2’ is quite close to the 'figure of merit" C2/B suggested
by Arnold. (5) To think in terms of counting rates can be misleading if
alternatives involve different counting schedules. The expected total
count attributed to the sample tC and the expected total background count
in the gross sample count tB are the fundamental quantities which control

detection and also precision of estimating C, the subject of question Q3.

To answer question Q3, a confidence interval estimate of C can be
constructed around € as a '"center." For tB > 1and p < 1, both confidence
intervals Il and I4 have true confidence coefficients close to the stated
ones. In this region 14 is conservative in the sense that its confidence
coefficient is never less than the stated one. I1 confidence coefficients
fluctuate around the stated one, being significantly low most of the time
for small tB. The differences in the two confidence coefficients become

neglegible for tB > 10. Rephrasing in terms of y gives the following rule
of thumb:

RTB: For any of the confidence coefficients 0.90, 0.95, and 0.99
and p < luse confidence interval rule I4 if 2+ 3/2p <y <6+ 12/p
and use 1,16+ 12/p <y. Use of either I, or I, is questionable
ify<2+ 3/2p.

The conservative nature of rule 14 is compromised somewhat by expected
confidence interval lengths that are longer than those for Il. The greatest
differences are for p = 1/10 and tC and tB small. (Using the net count
form of the intervals, the greatest difference is about 4 with 1 - @ = 0. 99,
about 2.5 with 1 - @ = 0.95, and about 1.3 with 1 - @ = 0.90). As either
1/p, tC, or tB increases the differences decrease. The rule of thumb RT3
is the result of the author's preference for a rigid lower bound on the

confidence over a shorter expected length.
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r The theoretical and numerical results of Sections IV and V were
reevaluated in Section VI to determine the importance of the background

estimate for high power in hypothesis tests and for short confidence

gested. intervals. The results are summarized in the following rule of thumb:
RT4-_ If a choice is available as to the allocation of a fixed total
counting time between sample and background (where the back-
at - ground is not to be used for other samples), split the counting
ol | time equally between sample and background (p = 1). If a back-
ground count is needed to match a sample counted for a fixed
be time t, the background counting time s should always satisfy
nce s >t only in extreme situations should s > 3t.

In the last part of Section VI it is shown that the average value
prbperties of hypothesis tests and confidence intervals do not change
when backgrounds are used to correct several samples. However, the

| variance of the fraction of correct decisions and the average confidence
interval length both increase with the number of times the background
© is used, because answers tend to be blocked on background. Numerical
investigation of the asymptotic variance for hypothesis tests suggests
the following rule of thumb for combating this effect by increasing the
/e precision of the background estimate:
dle RTS: Suppose each background estimate, based on a count over
time s, is to be used to correct M independent samples, each
:d based on count over time t. p and M should be inversely
est related in agreement with the following:
For M < 10, have g < L
% For M = 25, have p ~ 1/4;
- For M = 75, have p ~ 1/10.
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As indicated in Section I the investigations reported in the paper
are concerned with the region of appreciable background correction,
defined as 0 <k = (tC)/(tB)l/2

apply in this region. For large k background is a nominal problem.

< 15. The above rules of thumb only

A reasonable rule of thumb which insures sufficient background infor-
mation without being overly conservative is the familiar rule which

minimizes the variance of ¢

RTB: For k > 15 and either hypothesis testing or confidence interval

applications select

)1/2 1/2'

pw(B-l—C /B

III. STATISTICAL CONCEPTS

To insure that the reader is familiar with the statistical concepts
needed to discuss the questions raised in the introduction, the following
description of hypothesis testing and confidence interval estimation is
included. For a more detailed treatise of these concepts the reader is
referred to any of a number of standard statistical tests; e. g., (6,7, 8).
The description below is purposely couched in terms of the specific

application dealt with in the paper.

Let x and y be independent Poisson chance variables with mean
values (B + C)t and Bs, respectively. The sample space S for x and y,
the set of all possible experimental values that can be taken on by x and y,
is the infinite lattice of points (x,y) with x and y non-negative integers.
The joint probability density function (p.d.f.) for x and y defined on the

points of S has the form
{exp[-(B + C)t - Bs]} [(B + OtT* (Bs)Y /x1 y!. (3)

Let Q) be the closed first quadrant of two-dimensional space. Witht and s
fixed by the experimental situation there is a one-one correspondence
between the possible p.d.f.'s for x and y and the points (B,C) of Q. The
set (1 is called the "parameter space.' Let w be the subset of () consisting
of all points of the form (B, 0).
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The null hypothesis HO of Section I now states that the true p.d.f.
in (3) for x and y corresponds to a point of w, or simply "is a point of w. "
The alternative hypothesis HC states that the true p.d.f. is a point of
Q0 - w- A decision rule for answering question (;21 is a mapping of the
sample space S on to the parameter space (. S is divided into two sets,
say SO and SC' If the experimental point (x,y) falls in SO decision HO or

w is made. However, if it falls in SC decision HC or ( - w is made.

(3) the

goodness of a decision rule is measured by the probability with which

In the Neyman and Pearson theory of hypothesis testing

it makes wrong decisions. Two different wrong decisions are possible
depending upon the true value of C. However, in any given application
it is only possible to make one of these errors. If HO is true, the only
possible error is to decide H is true. This error is called "alpha"

or 'type I." The probability of an alpha error occurring is designated

by a lower case @. Symbolically,

a(B,t,s) = Pr {(x,y)eSCIC =0,B,t,s)

Pr [Hc’w}. (4)

Here, the mathematical notation Pr {A‘B} stands for the probability that
the event A will occur given that the state of affairs is B. The familiar

term '"'level of significance"

refers to @ expressed in percent; i.e., the
level of significance is 100a%. In general, the alpha error for a decision
rule will depend upon B,t, and s. This dependence is indicated in (4)
above. If HC is true, an error is committed only when decision Ho is
made. Such an error is called '"beta" or 'type II." The probability of

a beta error occurring is analogously designated by a lower case .

As above

B(C,B,t,s) = Pr {(x,y)eSO\C, B, t,s} (5)

Pr {HO‘Q -wl-
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In addition to depending on B, t, and s, is a function of C. For a reasonable
decision rule, B would be a decreasing function of C; i.e., the lai“ger that

C is, the less likely that a beta error would be committed. Also, one

would expect that as C - 4o, B(C,B, t,s) - 0 for every fixed set (B, t, s).

The compliment of 3, 1 - 3, is called the "power" of the decision rule.
Clearly,

1-pB(0,B,t,s) = afB, t, s). (6)

The complete picture of the probabilities of errors, both types I and II, is
; | depicted by a three-dimensional plot of the power surface over Q. A

‘ 1: typical power surface appears in Figure 1.

' 1 - B(C,B,t,s)
I Limiting Power = 1

FIGURE 1

Typical Power Surface for a Decision

Rule Test of HO Against HC
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For the moment suppose that the background counting rate in our
problem is known to be B = BO; i.e., the parameter space is one-dimen-
sional consisting of all points (BO,C). The structures of the two hypotheses
Ho and HC are quite different. HO completely specifies the distribution
of the chance variables x and y. As such it is called a "'simple' hypotheses.
He
C positive. Or in other words, HC is the union of an infinite number of

merely states that the distribution of x is one of an infinite family with

simple hypotheses. The distinction is made by calling Hc a '""composite"
hypothesis. The Neyman and Pearson selection criterion for a best
decision rule is that both alpha and beta errors be nominal in the follow-

ing sense.

First, a tolerable alpha error « is specified, say @ = 0.05, a 5%
level of significance. Usually an infinite family of decision rules will
have an alpha error not greater than 0.05. Second, from among this
family of rules one is selected which makes B small. Since B is a function
of C, one particular value of C, say Cl’ is considered. Any rule which
minimizes B(C 1, B,t, slover the entire family is called a "'most powerful"
decision rule for C 1 at level o, since minimizing B is-equivalent to
maximizing power at Cl' Usually, the most powerful rule changes with
Cl. The cases when the Neyman and Pearson approach is really fruit-
ful are those for which the most powerful rule is independent of C 1 Such
a rule is called "uniformly most powerful.' Refering to Figure 1 the
depicted decision rule would be uniformly most powerful for B = Bo if
above the line B = Bo in ( the surface were the envelope of all possible
decision rules with the same type I error. If one accepts the thesis
that minimizing alpha and beta errors is the correct way to select a
decision rule and, if the rule most suffice for a range of C values, a
uniformly most powerful rule would seem to be the best that one could

hope for.
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Our problem is complicated because the parameter space (I is two
dimensional. The uniformly most powerful rule for B = BO is a fungtion
of Bo' So, with B unknown, a uniformly most powerful rule does not
exist. In general, the level of significance of any decision rule changes
with B. For our problem there are rules which have constant level of
significance independent of B. (The poxn;er surface in Figure 1 is for
such a rule.) These rules are called "similar rules' or ''rules with
Neyman structure' after Neyman who first discussed their existenoe(g).
For each type I error o there is a unique uniformly most powerful similar

rule for our problem.

In Section IV four different decisions rules Dl’ D2, D3 and De
are described and their power surfaces compared. The first three rules,
Dl’ D2, and D3, are based on the normal approximation to the Poisson
distribution. Nominal levels of significance, 1%, 5%, and 10%, are set
for these rules using normal distribution theory. The actual levels fluc-
tuate around the nominal ones as B, t, and s vary. The selection of a
best rule from among the set of three entails not only a comparison of
the power surfaces but also a comparison of the degree of fluctuation

of the actual significance levels about the nominal ones.

. The attraction of rules based on a normal approximation is that
of simplicity. Tables are not needed for application. As a reference
the exact significance level rule De is evaluated also. Since De is the
uniformly most powerful similar rule for all alternative hypotheses
HC (C > 0), an optimum standard is provided against which to measure

the power characteristics of the simple rules Dl’ D2, and D3.

In confidence interval estimation a random interval I(x,y,t, s)
is constructed with the property that the probability that I(x,y, s, t)
covers the true net sample counting rate C is a fixed fraction 1 - @,
independent of the actual value of C. It is important to realize that it

is the interval, not the unknown count rate C, which is random. After
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an experimental observation (x, y, t, s) has been taken and a particular
interval I(x,y,t, s) has been constructed there is no probability involved.
} The parameter C, though unknown, is an absolute quantity, not subjec"t
to random fluctuations. Either it has been covered by I or it has not.
The term ''confidence'' describes the goodness of the covering I in an
average frequency sense. In a large number of independent applications
of the random interval technique approximately 100(1 - @)% of the
intervals will actually cover the true value of C. While a definite state-
ment concerning coverage on a particular application is impossible, it

" can be said that on the average coverage occurs about 100(1 - @)% of

the time. This average frequency property of the coverage interval

is described on a single application by the statement that one is 100(1 - @)%
confident that the parameter C lies in the interval, or thatI is a
100(1 - @)% confidence interval for the true value of C. Here, (1 - @)

is termed the '"'confidence coefficient."

Confidence interval decision rules and hypothesis testing decision
rules are closely related. In fact, every confidence interval rule I
. defines a hypothesis testing rule D. The definition is set up in the

following manner.

For every experimental data point (x,y,t,s), D makes

decision ”H0 is true' if and only if I covers 0.

' Thus, type I error and confidence coefficient are numerically compli-

mentary fractions for I and the corresponding D.

In general, there will be an infinite number of confidence interval
'l s with the same confidence coefficient. The goodness of a rule can

.@;ﬁeasured by the average length of the interval. This average length
ill usually increase with C. A best rule for fixed C = C1 would be one

b

hich gives the shortest average length. It would be uniformly best if
L g ve the shortest average length for all C > 0.
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As for hypothesis testing rules the fact that the background counting

'ate B is unknown complicates the evaluation of confidence interval rules.
| Two rules I1 and 14 are discussed in Section V. Both are based on the

i normal approximation to the Poisson distribution. Stated confidence
coefficients of 0.90, 0.95, and 0.99 define the rules. Ewvaluation con-
sists of investigating the true confidence and average length as functions
of B, C, tand s.

It is not possible to construct an exact confidence interval rule for
C when B is unknown so there is no optimum standard with which to compare
I1 and 14. An exact rule for the ratio C/B does exist (see Chapman( 10))
which is the confidence interval rule that defines the hypothesis testing

rule De discussed in Section IV.

IV. HYPOTHESIS TESTS

i

o Let x and y be independent Poisson chance variables with mean J
values t(B + C) and sB, respectively. Witht and s known there is a one-

1 ‘ one correspondence between the possible p.d.f.'s for x and y and the

1 parameter space () consisting of all points (B, C) in the closure of the

first quadrant of the two-dimensional Cartesian plane. Let w be the sub-
set of Q consisting of all points of the form (B, 0). The problem is to
construct a decision rule, based only on the knowledge of x,y,t, and s

to test the null hypothesis,

.
i
H :C =0, 7
%l o (7)
|

(i.e., that the true parameter point lies in w) against the alternative
I hypothesis,

i

’ H

C:C>0; (8)

PO ——

(i.e., that the true parameter point lies in O - w).

Normal Approximation Decision Rules

The simplest approach to the solution of the above problem is to

assume that x and y are normally distributed, construct a standard normal
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1 zero-one.statistic, substitute estimates for parameters where needed,
and test whether the resulting statistic is significantly larger than zero

assuming a normal zero-one distribution. This approach gives a

decision rule of the form
D:- Decide HC is true if x - py > na’(}‘; (9)
Otherwise, decide Ho is true.

Here, p =t/s, the ratio of the means when H0 is true. The quantity n,

)arg is the 100(1 - a) percentile of the normal distribution with mean zero

1l

~and variance one; i.e., n, satisfies F(na) =1 - o, where F is the
cumulative normal distribution function defined as
AR 1§ -a?/2

F(u) = [_——:-_J e da. (10)

Tbe quantlty o is an estimate of the standard deviation ¢ of x - py.

It is well known (e. g., Feller(ll)

, p- 230) that the normality

: ption is valid in the limit as t(B + C) - +» and sB - +=. If both
__gﬁeﬁar’ls t(B + C) and sB are sufficiently large and if ¢ is a good estimate
of o »the normal approximation approacn should be almost exact in the

el variance czofx - py is
2
=B + C) + pXAsB) = (tC) + o(1 + p) (sB)

a. (11)
= (tC) + (1 + p) (tB).

TR T
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From the first line of (11) the most obvious unbiased estimate. of 02 is
’521 =X + p2y- ; (12)

The estimate '&'1 gives the decision rule

1/2

D,. Decide Hp istrue if x - py >n [x + p y] (13)

1
Otherwise, decide Ho is true.

Statement (13) will be called a ''net count" formulation of the decision

rule D1 because in the physical application x - py is the sample net count
estimate. Division of the inequality in D1 by t gives the ''net count rate"
form of the rule. The net count rate forms of all the rules are stated in

(2) of the introduction.

Use of the variance estimate '53 in a decision rule with null hypoth-
esis H is not in agreement with the classical Neyman and Pearson theory
of hypothe51s testing. (3) Strictly speaking, the null hypothesis variance
of x - py belongs in the decision rule. In lieu of this, an estimate should
be used which is not seriously affected by the introduction of a positive
sample (C > 0) into the null background-only distribution. For p < 1, the

case of practical interest, D, places most of the weight in the variance

1
estimate on x which causes C to affect the decision rule in the worst

possible manner. Accordingly, the power of D1 suffers.

From (11) the simplest estimateof ¢ 2 when C = 0 is

= o(1+ ply, (14)

which gives the decision rule

1/2

D,- Decide He is true if x - py >n [p(l + p)y ] (15)

Otherwise, decide HO is true.
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When C = 0, x by itself possesses information about B; in fact,
the mean of x is just tB. The proper linear combination of x and y will
give a better estimate of ¢ than either 31 or 52- Now, x and py ’
are independent unbiased estimates of tB with variances (tB) and p (tB),

respectively. Thus,

(x_, oy | 1 1| _ p(xty)
{tB +p(tB)J/{tB +p(tB)}- T+p (16)
H * is the minimum variance, unbiased, linear estimate of tB based on x

and y. The result(16) gives

'Eg = o(x +y) (17)

- 5{ . as the minimum variance, unbiased, linear estimate of o 2 pased on x

and y when C = 0. The net count form of the corresponding decision
rule is

1/2.

D Decide Hp is true if x - py > na[p(x +y)] ; (18)

3
Otherwise, decide HO is true.

An interesting property of D3 is its symmetric treatment of

ample and background information - a property not shared by either
or D -

t‘i"wurn weighting of the two counts as illustrated in (16) .

Of course, this symmetry is a direct consequence of the

:' B), the rule D3 reduces to a test of whether the sample counting

-x/t is a normal variable with mean B and variance B/t. Or, in

ﬂie known background distribution. On the other hand, if the sample
X Pr__} o, to 4o | x/t———>Pr B +C), D, reduces to

eount dominates (i.e. 3

rvation from the known sample total count distribution.
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For a given value of p, tB and a the exact significance levels of

the decision rule D; (i = 1, 2,3), say ozi(p,tB,a), is

1

ai(p,tB,a) Pr {(x,y)e Silp,tB,a, C =0},

| (19)

[exp -(1 + o)tB] Z (tB)*(ptB)Y /x!y!
(x,y)eSi

The set Si is the subset of the sample space where the points (x,y) satisfy

X - py > nagi. The calculation (19) was done on an IBM 7090 for a rep-

resentative set of p, tB and @ values. Some of these results for the three

decision rules Dl’ D2, and D3 and stated significance levels of 1%, 5%,
and 10% are reported in Table I. For each significance level the p = 0

entries are the limiting probabilities when the background counting rate B
is known exactly. (This is mathematically equivalent to a background

estimate based on an infinite counting period.) In the limit D2 and D3

are identical. D1 neglects the variance information in B, using

1/2

X as a variance estimate.

The comparison of the significance levels of Dl’ D2, and D3 in

Table I clearly shows the robustness of D The pattern of the exact

3"
levels is similar for all three levels, o« = 0.01, 0.05, and 0.10. Drop-
ping the argument of the o, functions defined in (19), the funda-

mental characteristics of the patterns seem to be:

1. For0<p< 1/2, g is uniformly closer to o than either @) or a,.

The ordering of the errors is @) <@<ag<a,. The biases in @,
and @, are extreme for small tB and @ = 0.01: both biases decrease
as tB increases, while a, bias decreases and @, increases as

o and/or p increases. Only for isolated instances with tB = 1,2

is aq badly biased.
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2. For p =1, 03(a1) is uniformly closer to « than @y With.a = 0.01

or 0.05 the ordering is a3(a1) <a <a,, while for ¢ = 0. 10 it is

2)
9" The bias in a/2 is increased in the same modnotone
pattern stated above. Only for tB = 1,2 and ¢ = 0.01 is ozB(al)

badly biased.

a < ag(al) < a

3. For p = 2, the picture is not so orderly. The bias in @, is

decreased over that for p = 1, and that in a increased. aq has

an extreme negative bias for small tB.
From a practical standpoint, since tB is not known exactly, background
and counting time ratio ranges must be determined over which the exact
significance level does not deviate excessively from the stated one. Of
course, what constitutes an excessive deviation must be left to the judg-
ment of the user. A reasonable scalé of acceptability would seem to be that
for @ = 0.01 exact levels in the range 0.005 to 0.02 are acceptable, for
a = 0.05 exact levels in the range 0.035 to 0.065 are acceptable and for
a = 0. 10 exact levels in the range 0.08 to 0. 12 are acceptable. Based
on this scale of acceptability and on the fact that negative bias in the
significance level is coupled with a general depression in the power

function (see Figures 2, 3, 4), D, is certainly superior to D 1 and D

3
Uniformly Most Powerful Similar Decision Rule

9"

When x and y are independent Poisson chance variables with mean
values t(B + C) and sB, respectively, the conditional distribution of x
given the sum x + y is binomial on x + y trials and success probability
R+ 1)/[p(R+ 1) + 1], where R =C/Band p =t/s (e.g., Chaprnan( 10)).
Since the parameters of this binomial distribution depend only on the
sample information x,y, s, and t and the true counting rate ratio C/B,
an exact decision rule for the null hypthesis HO can be constructed from

tables of the binomial distribution.
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(10)

The mathematical details are contained in Reference and will not be

discussed here. This decision rule De has the form

D . DecideH_ is true if x >Xa(x +y,0);
e

C

Decide H, is true with probability

C (20)

P (x+y,p) if x = X (x +y,p);
Otherwise, decide HO is true.

The critical point X (x+y, p)and the probability P (x +y,p) are

fixed numbers which are determined by @, x + y, and p.

De is an exam‘ple of a randomized decision rule. When x = Xa the
decision is based on a random experiment. Figuratively, a coin is tossed
with the probability of heads equal to Pa. If the coin lands heads,
decision HC is made; if it lands tails decision Ho is made. Randomization
is an academic device to assure that the significance level of the rule is
exactly equal to 100a%. Since the binomial distribution is discrete, in
general, the best that can be done is to select a critical point Xa which

brackets the stated type I error «; i.e., Xa satisfies
Pri{x >Xa’ H_ ) <a<Pr{x§XQ‘HO}. (21)
When (21) is the case, the rule De with

P (x+y,p) = [a-Prix> Xa‘Ho } ]/Pr{x = XalHo} (22)

""has a type I error equal to a.

The conditional distribution of x given x + y and C = 0 does not
depend upon B. So, the rule De has a type I error identical to @ on w.
The conditional binomial test on each diagonal x + y = constant is the

uniformly most powerful test of the null hypothesis that the success

~ probability is p/(1 + p) against the one sided alternative that it is larger
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than p/(1 + g). Therefore, the rule De is the uniformly most powerful

similar decision rule for testing the null hypothesis Ho against alternative
(C >0). Appendix A lists the critical points X ,and the rariddomization

probabilities Pa for @« = 0.01, 0.05, and 0. 10, and a representative range

of x + y and p values.

Since the biomial distribution with success probability q and trial
parameter m is approximated by a normal distribution with mean mq
and variance mq(l - q) for m large, the exact rule De is asymptotically

equivalent to the rule Dé-

D’. Decide H~ is true
e C
1/2

1fx>(x+y)——9—+n[p+l1-p )(X+y)]

(23)
Otherwise, decide Ho is true.

Here, n, is the 100(1 - @) percentile of the unit normal distribution.
Rewriting the inequality of (23) shows that De’ is identical to D3 of (18)
Thus, D3 is the asymptotic form of the uniformly most powerful similar

rule De for t(B + C) and sB large.

Comparison of Power Surfaces

The exact power surface for the Rule Di(i =1,2,3,e), sa
1- Bi(p,tB,C,a), is

1- Bl(p:tB:C:a)

Pr{(x,y)eSilp,tB,C,a}
{exp[- (B + C) - ptB]} ><

n

(24)
M, (x,y lp, @) [(B + C) ]X(ptB)y/X.‘y.',

non >3

0
0

<

T '
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e

For rules Dl , D2, D3 , the function Mi(x,y o, @) satisfies

M(x,y p,@) = 1 (x = py) > .5 ; :
(25)
= 0 Otherwise.
Because of the randomization nature of De, Me satisfies
Me(x,y p,a) = 1if x> X (x +y, p);
=P (x+y,p)if x =X (x+y,p); (26)

0 Otherwise.

Table I gives selected values of 1 - Bi(p,tB,O,a) fori=1,2,3. By
construction 1 - I3e(p,tB, 0,a) = a. These power surfaces were also
evaluated numerically at selected points of ) -w using an IBM 7090 to
calculate the series in (24). Specifically, for each of the four
cirégigion rules 18 power surfaces, the (p, @) pairs for p = 1/10, 1/5,
1/3, 1/2, 1, and 2 and @ = 0.01, 0.05, and 0. 10, were investigated
riumerically. For each surface enough points were calculated to con-
struct ten background constant graphical sections. Figures 2, 3, and
4 compare similar power surface sections of the four decision rules
for a representative set of (p, @,tB) triples. The entire set of 180

power surface sections for rule D3 appears in Appendix B.

For direct comparison with the asymptotic portion of the power
surface with t(B + C) and sB large the abscissa scales for all power
surface sections are expressed in standardized total net sample count
units k where

k = (tC) /(tB) /2 | (27)
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k = (tc)/(tB)”2
FIGURE 3

Power Surface Sections for Stated 5% Level
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for Selected tB
and p Fa
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.‘fThus, k is the ratio of the expected total net sample count to the square

root of the expected total background count in the gross sample count.

The comparisons in Figures 2, 3, and 4 illustrate clearly the '
relationships among the four power surface sections which are evident
for all 180 (p, @, tB) triples investigated numerically. First, all four
curves are nearly parallel (excluding the regionnearC = 0) for a fixed

’(p,a, tB) triple. This means that the ordering of the powers of the four
fules at specific (B C ) point is the same as the ordering of the exact
type I errors at (B 0). Because of the vertical normal probability
scale the power mcrements between the curves do not remain fixed. All
“~Curves approach one as C increases. This ordering of the powers points
"A—c;ixf."the importance of keeping the exact type I error close to the stated

one. When one of the rules D , D, and D3 has a large negative bias

2)
m a the power is depressed over the full range of positive C values.
Ry ¢

-wOn the other hand, the power is uniformly high for a rule with a large

:.‘;posﬁwe bias in @. Since the rule: D3 has the exact type I errors closest
to the stated ones over a large range of (p, @, tB) triples it is superior to
Dl because of less type I error bias and superior D
- power.

9 because of higher

i Second, with p < 1and tB not too small there does not seem to be

“?any advantage in using the uniformly most powerful similar rule D unless it is
- .':Tessentlal that the type I error be known exactly. For p > 1 and/or tB

.‘_;small the type I errors of the normal approximation rules are quite

' "erx;atlc For these cases the rule De should be used.

‘_;’: H

v-";%?Asymptotic Power Surfaces

When t(B + C)andsB increase without bound the power functions

the four decision rules D 1 D D3, and De all approach the same
miting form. This asymptotic power function is derived below for D3.
2 With trivial changes the same argument applies for D1 and D,. It has

2
Iready been noted above that D, and De are asymptotically equivalent

3
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Suppose t(B + C) and sB - += in such a manner that k of (27) is a

fixed positive constant. The limiting power function of the rule D3 is

*

lim 1/2
sB - 4 Pri{x - py>na[p(x+y)j H
(B +C) - +=

o} =Flk(1+ p)'l/z-na], (28)

where F is the cumulative unit normal distribution function defined by (10).
The proof of (28) is straightforward. Let u and v be chance quan-
tities defined as
-1 -2
u=(x - py) (tC) " and v = p(x +y) (tC) . (29)

Since x and y are mutually independent Poisson variables with means

(B + C) and tB/p, respectively, from (29) we know

Ave(u) = 1;

Ave(v) = o(tC) P 4+ (1 + k™2 (1+ k™% (30)
Var(w) = (1C) 1 4+ (1+ k™2 = (1 + o)k~ 2;

Var(v) = p(tC) ™3 + (1 + o)(ktC) 2 = 0.

The limits in (30) are approached as t(B + C), sB - +» consistent with
(27). Now u as a linear function of mutually independent Poisson
variables which individually in the limit are normally distributed also

becomes a normal variable in the limit. From (30) v - (1 + p)k-2 in

probability. By a version of Slutsky's theorem (see (6), p. 254),
sB - 4w Pr{x - py>n _[p(x +y)] ‘H }
t(B +C) - += « C
= sB - +w Pr{u > n,v \HC} (31)
t(B +C) - 4=

=Pr{u_ >n(1+ p)l/zk - 1},
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whe'r; .u is a normal chance variable with mean 1 and variance (1 + p )k_z.
"* Bvaluation of the last probability in (31) in terms of the unit normal cumu-

15.t1ve function gives the desired result in (28).

The sets of asymptotic power surface sections for @ = 0.01,
“ 6.05, and 0.10, respectively, are included in Appendix D. Each set
céntains curves for p =0, 1/10, 1/5, 1/3, 1/2, 1, 2, 3, 5, 10, 25,
" and 100.

' v. CONFIDENCE INTERVAL ESTIMATES

s
&
E

Let x and y be independent Poisson change variables with mean
~ values (B + C) and sB, respectively. As for the hypothesis testing
3 ‘p'roblem with t and s known there is a one - one correspondence between

the possible p.d.f.'s for x and y and the parameter space ( consisting

T AT

of all points (B, C) in the closure of the first quadrant of the two-
dimensional Cartesian plane. The problem is to construct a confidence

interval estimate of C based only on the knowledge of x,y,s, and t. L

Two solutions to the confidence interval problem are described
in the sequel. The primary distinction between them is the treatment

of the unknown background parameter B. The first interval I, is the

1
confidence interval formulation of the symmetric form of the hypothesis
1 I1 replaces B by the unbiased estimate y/s. The
second interval 14 is an example of a familiar method of eliminating a
(12,13)

testing rule D

nuisance parameter (see ) based on joint confidence region estimation

Rt e e

of the pair (B,C). The interval I, 1is classical, the method suggested in

“most texts on radiochemistry. The interval I, has not appeared in print

[ 4
“before. Both are based on the normal approximation to the Poisson

~distribution. For small (B + C) and sB I4 is superior to I1 in some
aspects to be explained below. To date, no exact, much less best in
any sense, confidence interval for C has appeared in the literature so
there is no absolute standard against which these normal approximation

= procedures can be measured.
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Intervals Based on Normal Approximation

With the assumption that x and y are normally distributed, an
approximate 100(1 - @)% confidence interval for either the net count tC,
or the net count rate C, can be constructed using the two unbiased

statistics, the sample net count,

tc = x - py, (32)

and the estimate of the variance 02 in (11) of the sample net count,

5,2 = x+ 0%y (33)
The net count form of this confidence interval I1 is
I.. Decide that C satisfies

1

1/2 1/2

x-py-n/(x+py) <tC<x—py+n/2(x+py) (34)

Here, p = t/s and na,/2 is the 100(1 - @/2) percentile of the unit normal
distribution (see the discussion leading up to (10)). The rule
I1 is the confidence interval formulation of the symmetric decision rule

version of the one-sided rule Dl'

An alternative interval can be constructed using a joint confidence
region approach. With x and y independent normally distributed chance
variables the chance function

= (x —u)2/u+(y -v)2/v, (35)

where u = t(B + C) and v = sB, has a chi-square distribution with two
degrees of freedom. Since C >0, the pair (u, v) must satisfy u > pv:

Let XB be the 10083 percentile on this chi-square distribution. Then,
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Pr{ngx?_a] =1l-a .(36)

.independently of uand v. The random set S(x,y) of points in the first
quadrant of the uv-plane, which is the intersection of the bracketed
:statement of (36), and the half-plane {u > pv} is a 100(1 - @)%

confidence region for the true parameter pair (u,v). It can be repre-
' sented as

2

1_a,u§pv20}- (37)

4 S(x,y) = {(u,v)|[(x - Wty - vy X

The set S(x,y) is closed and strictly bounded. As such, any real, con-
,:f,}s,,tiﬁuous function of (u, v) takes on a maximum and minimum value on S.

< (See Appendix C for the mathematics to justify this argument.) The

expected net sample count, tC = u - pv, is such a function. With t and

s_‘ fixed the interval (L, U), where

L = min (u - pv),
(u, v)eS(x,y)
(38)
U - max (u - pv),

(u, v)eS(x,y)

__ s (L/t, U/t). The calculation of L and U given x,y, p, and « is quite

\t"edious. L. and U must be approximated by numerical means as they

Instead of tabling the conservative interval endpoints in

(38), the normal percentile point n, ,, was substituted for(x ? - 0)1/2

gt'o give the confidence interval
Decide that C satisfies

L, <tC<U,. (39)
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That is, L4 and U4 are defined as L and U in (38) with the set S(x,y)
of (37) modified by replacing X - o with Nyl Tables of the rule Iy
are given in Appendix D. Because the set S(x,y) is contained in the
half-plane {u > pv} both L, and U, are necessarily nonnegative. For

4 4

comparison of expected lengths the rule I, was also forced to give a

1
nonnegative interval by replacing each endpoint with the maximum of

the endpoint and zero.

To compare the performance of the two confidence interval rules
I1 and I4 the exact probability of covering the true expected net sample
count and the expected length of the interval were computed for each

rule at all 972 possible combinations of the following parameters:

tC = 0,1,2,3,5, 10, 20, 30, 50;

tB = 1,2, 3,5, 10, 20;

o =1/10, 1/5, 1/3, 1/2, 1, 2;
1-as=0.90,0.95, 0.99

These calculations generally show that Il gives confidence intervals of

shorter expected length, and that I, has an exact confidence coefficient

closer to the stated one. Also, tha%t for 14 the exact coefficient errs on
the conservative side (is greater than the stated one), while for Il the
exact coefficient errs on both sides of the stated one.

Table II givesatypical comparison of the two rules for a stated
confidence coefficient of 0.90 and p = 1/5. The four columns of the table
give exact confidence coefficients and expected lengths for an expected
background count of 2 and various expected net sample counts. Rule I1
exact coefficients vary between 0.985 and 0. 867 while those for 14
between 0.938 and 0.906. For larger background counts the discrepancies
between the rules are not as great. Examination of similar tables for
the range of (1 - @, p) pairs investigated numerically indicate that the
major differences between the two rules occur for expected background

count of less than ten.
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TABLE II

COMPARISON OF CONFIDENCE INTERVAL RULES I, AND I .
FOR STATED 0.90 CONFIDENCE COEFFICIENT, p =1/5, °
AND EXPECTED BACKGROUND tB = 2

!

Probability of Covering Expected Length
True Expected Net Sample Count tC of Confidence Interval
1 e _h e :
.985 .938 2.7 4.0 ‘i
.869 . 906 4.0 5.3
.871 . 909 5.2 6.5
.867 .908 6.4 7.5 N
.878 .913 8.3 9.1
. 889 2911 11.4 11.9
.894 . 907 15.5 15.9 H
.894 . 906 18. 7 19.1 §
. 896 . 906 23.8 24. 2 }
l
Appendix D lists the confidence interval endpoints L, and U4 for |
Z“for all combinations of 1 - @, p,x, and y compatible with an expected
cground count of not more than ten during the recording of the sample
For x and/or y beyond the range of the table, the simple rule I1
used. Also in Appendix D the complete set of exact confidence
cient expected length tables are listed for both rules I1 and 14.
ptotic Expected Lengths
i

*of the two confidence interval rules I1 and I4 approach the same limiting

f_S"\ippose t(B + C), sB - += in such a manner that the standardized

pected length of either I or I,. Then,

1

_ . 1/2 ’
; lim (Efct) =2n_, (1 +p) /k . (40)

"B + C) - +o /2" " F |
hsB -t
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Clearly, when the expected net sample total count Ct - +°°,.'the length of

the confidence interval must also approach +=. The result (40)

shows that the ratio of these two quantities approaches a limit. Figure D. 1
in Appendix D is a plot of this limiting ratio as a function of p and k. The
ratio is normalized by division with 2na/2 so a single graph suffices for

all confidence coefficients.

The proof of (40) for I1 is straightforward. Let u be the chance

Y

quantity defined as
u = (x + o2 2 1), (41)

Rewrite (41) to give

2 _1l+p |1 x-B+C) 1 X o y - sB|
102 H k2 t(B + C) TIC B+ C) +k2 sB I’ (42)

u

Using the triangle inequality and taking expectations of both sides of (42)

2_1+pl< 1 ‘x—t(B+C)' 1 x | lx-sB.’
Ave‘u k2 ‘-kz Ave B 10O + i Ave B + C) + k2 Ave B
(43)
<1 [_.__1__] 1/2+__1__+_L [_1_.]1/2
k2 (B + C tC k2 sB
From (43) u2 ___l_iz_g_ - 0 in mean of order one when t(B + C) and sB - +o |
k

The inequality,
1/2

_(1+9) k 2 _1+p
Uty Saeplzle mT gl 4
/2, .
/k in mean of order one. Now (40)

(note u > 0) givesu ~ (1 + p)

follows since by definition

Ave (u) = E/Zna//2 Ct (45)

for rule I..

1
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THE IMPORTANCE OF GOOD BACKGROUND ESTIMATION

In both the hypothesis testing and confidence interval problems
ussed in Sections IV and V the goodness of the inference about the
'r’uaknown net sample count rate C improves with more precise informa-
’ti“b'n about the background count rate B. For a fixed expected total back-
._»,.ground count tB contribution to the sample gross count, the importance

: of the background estimate can be investigated as a function of the total

e:fpected net sample count tC and the sample to background counting

. tuné p by reorganizing the results presented in Sections 1V and V.

Hypothe51s Testing

"r*%‘a;x-x
AR

Consider the family of power surface sections for a given

PR AN
'f':iecision rule D with tB and « fixed and p varying over a set of non-

'x..

negatlve values. The curve p = 0 represents the limiting case when
dy the expected background count is known exactly. Positive p curves

'ﬁnrepresent different degrees of information about the background where

= '-'1‘

mformatmn increases as p decreases. Three of these families of power
curves for rule D3 and (tB, @) pairs of (10, 0.10), (2, 0.05), and (50,
0 01) are plotted in Figures 5, 6, and 7 respectively. The limiting

i

fam1hes for @ = 0.01, 0.05, and 0. 10 applicable for large t(B + C) and

sB and all four decision rules D D2, DS’ and D are plotted in
Appendlx B. The effect on power of increasing ’rhe length of the counting

penod for the background estimate is clearly seen in these plots. The
- power is very low compeared to the optimum curve (p = 0) if p > 1. Good
power demands at least p = 1{(i.e., counting the background at least as

R e

;*'long as the sample). The economics of the particuler application would

2z undoubtedly determine what p in the interval 0 < p < 1 is optimum.
Certamly the potential increase in power hardly warrants a p < 1/5.

vbAreasonable rule of thumb seems to call for a p in the range 1 to 1/3
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A more intelligent decision can be made if good power is required
foxl a particular alternative or short range of alternatives. For example,
; in the limiting power curve families the maximum difference between the
power curve for p = 0 and curves for 0 < p < 11is for k near 2. The exact
pasition of k shifts slightly with @ and p. For good power near k = 2,

<1 is needed, but at least on an absolute scale for large k say k > 5,

= 1 will suffice.

The above discussion applies when the sample count has already
been taken or, at least, the decision has been made as to how long the

- Tsample is to be counted. A background count must now be taken which is
"‘.of commensurate precision so that most of the information in the sample
ill be extracted. A different problem arises if a fixed time period is
v';ailable in which both sample and background counts must be taken. In
the asymptotic case when both B and C increase while C/Bllz remains

bbﬂnded, splitting the allotted time equally to sample and background

1‘sx?optimurn; i.e., p = 11is optimum. This follows directly from the fact
that the argument of the cumulative unit normal distribution of the limiting
power function of (28) can be written as

1/2C

K ., _st ) '
1/2 - n, =( ) Sir2 n, (46)

(1+ p)

s +t

ZWith s + t = M, a constant, (46) is a function of s and t only through
the product st, which is a maximum for s =t = M/2. No formal
_ proof is offered of the optimum allocation for the finite expected count |

exact theory. Numerical checks using the power surface sections for

!mrule D3 in Appendix B suggest that if the optimum is not p = 1, it is close
" toit. Figure 8 shows six plots of power versus p with t + s fixed, three
being limiting theory and three exact. Each curve is identified by
a k value or k and tB values when p = 1. These curves are typical in
that the optimum is quite loosely defined. From a practical standpoint,

any ¢ in the range 1/2 < p < 3/2 gives power close to the maximum.
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Asymptotic

— — — Exact

For p =1
1.0 k=5
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FIGURE 8
1 Power of Stated 5% Level of Significance Decision Rule Dg
I? as a Function of p = t/s for Fixed Total Counting Time

t +s = 2k2B/C
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idence Inte rvals

.

“In a manner similar to hypothesis testing, families of expected
e fidence interval length can be plotted for fixed confidence coefficient
¥ o) and background expected count tB, and a range of p values
_i;,?- p = 0. Three such families of curves for (tB, 1 - a) pairs of
'0.95), (10, 0.90) and (20, 0.99) are plotted in Figures 9, 10, and
espectively. Since the rule I4 was suggested for an expected
'ground count of less than 10 and I1 for greater than 10, Figure 9

.’x" 14_ Figure 10 as the transition point includes both I1 and 14
Figure 111is for I,. The limiting family for large t(B + C) and sB
lotted in Figure D. 1 of Appendix D. These plots are normalized to

ude all confidence coefficients.

The conclusions for all these plots are similar to those for hypothesis
@sting. Here, improvement in the rule is measured by the incremental

. E:fening of the expected length function in place of the incremental

‘ éeasing of the power function. Clearly, short expected length demands

. 1 The exact value of 0 < p < 1 would depend upon the application.

good rule of thumb seems to be, as above, a p in the range 1 to 1/3

nding on the economics of the particular application.

The picture is particularly clear for the limiting expected length
tion of (40). For a given sample and background the ratio of the

ected length for a given p to the shortest expected length with p = 0

With a fixed total counting time for both sample and background,
~argument identical to that for hypothesis testing shows that p = 1 gives
the shortest expected length in the asymptotic case. Again numerical

é.hecks suggest a similar result for the exact theory.

At first glance the result of p = 1 being optimum may seem to
ontradict the familiar rule based on counting rates (see( 16), p- 269,

rob. 6). Specifically, the rule is to select p so that

02 = (C + B)/ B (47)
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B¥rixed total counting time must be allocated to both sample and

uvn'd:- The rationale behind (47) is that such a p minimizes the

%of ¢ . When the means t(C + B) and sB are small both x and

1Ssgn variables have distinctly non-normal distributions. As
"mmlzlng the variance of ¢ does not necessarily maximize the

: f a decision rule and/or give the shortest confidence interval

When both means are large, x and y are approximately nor-

minimizing the variance of C is the correct procedure. How-

he limit of the count rate ratio in (47) is one when (B + C),

, so that k = (tC)/(tB)l/z remains fixed. For the cases considered

i ‘*’baper the above rule in the limit agrees with our recommenda-

e Use of Background Estimates

: Frequently in practice, the same background estimate may be
e many times to correct sample total counts to net counts. For
nl.. a radiochemical laboratory may check the background of a
; 'cular counting instrument once or twice daily. Either the latest
ground estimate or a long term average estimate is used with all
v -._.‘ analyzed on the instrument until another background check is

e.
The average value characteristics of decision rules, both
¥pothesis testing and confidence interval, when multiple use is made
N ékground estimates, are the same as those discussed above where
'_ dependent background estimate is provided for every sample. If
r;lple analysis is selected at random, the parameter triple (k, tB, p)
efi}xés the power of a hypothesis testing rule and/or the expected length
,'a':confidence interval rule in the manner specified in Sections IV and
* Multiple use of background estimates does not influence the average
havior of rules on randomly selected samples or the long term
l__lavior averaged over background estimates; but it does increase the
variability of the characteristics of rules about the average value, since
}ie decisions tend to be blocked on background.
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To illustrate the situation consider a fixed number T of samples
that are counted and background estimates supplied for each. The samples

are grouped into R blocks of size M M Mr' All sample counts

for a given block are paired with the sarr12e background estimate. Algebraic
complexity hardly warrants a general treatment so it is assumed that all

T sample counts and R background counts are mutually independent Poisson
chance variables, the sample counts having expected value t(B + C) and

the background counts expected value sB. Let ij atrllld Yy be the jJCh sample
count and the background count, respectively, for v block. The D3
decision rule for the ijCh sample is

Decide Hq is true if xVj "V, na[p(xv + Y, )]1/2
Otherwise, decide Ho is true.

The I4 rule is

Decide that C satisfies L, < tC < U4 s

where L4 and U4 are defined in terms of the set S(ij’ yv) in Section V.
Let P(y) be the conditional probability that the decision "Hc is true" is
made given that Yy =Y. Let E(y) be the conditional expected length of the

confidence interval given that Yy =Y Symbolically,

1/2

P(y)

E(y)

Pr {x ;= oy >0 lelxyy +y ) 17y = v),

4
Ave {U4-L4 Yy =Y} (48)

Because the T sample counts are identically distributed, P(y) and E(y)
do not depend upon v and/or j. Let ng be the number of times decision
"Hep is true' is made for the v th block Let e be the sum of the lengths
of confidence intervals for the v th block. Let

R,
2 nande:fe. (49)
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; 'i‘hen, n/T is the fraction of correct decisions by rule D3 for the entire

Z¥ cet of T samples. And, e/T is the average length of confidence intervals
7 for the entire set of T samples. Each n and e, conditional on fixed
packground count y is the sum of M mutually 1ndependent chance vari-
ables with average values P(y) and E(y) respectively. Using conditional
'1- probablhty calculus

Ave (n/T) =(1/T) Z Ave [Ave(n_|y)]
v =1

(50)

= (1/T)Z Ave [M_ P(y)]
v=1

= Ave [P(y)] =1 - B4(C).

'j%'HeI‘e, 1- BS(C) is the power of rule D

3 for alternative hypothesis HC
?fé_.discussed in Section IV. Similarly

Ave (e/T) = E4, (51)

© where E4 is the expected length of confidence interval rule 14 discussed
in Section V.

Each n, conditional on fixed background count y is a binomial
chance variable on MV trials with success probability P(y). Using
-~ this fact and the conditional variance formula (see Reference( 14), p- 65)

. the variance of n/T is




i
P
[
.
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R
Va.r(n/T):(l/T)2 Z Var (nv)
v=l

10

-(1/T)% L {Ave [Var(n |y)] + Var [Ave(nv\y)]}
v =1

(52)

= (1/T) i {M Ave(P(y)[1 - P(y)]) + M2 Var[P(y) ]}

v=l

= (1/T) Ave {P(y)[1- P(y) ]}+(1/T) ZM Var [ P(y)].
v=1l

= (1/T) Ave [P(y)] Ave [1 - P(y)] +(1/T)2 i’ MV (I\/IV - 1) Var [P(y)

v =1

The last line of (52) is obtained by adding (1/T) Var [P(y)] to the

first term and subtracting the same from the second term of the line above.

A similar argument gives

Var(e/T) = (1/T) Var (U, - L )+(1/T) Z M (M, - 1) Var [ E(y)].
v=l (53)

Equation (50) and (51) show that the average value properties of
the rules D3 and 14 are independent of the number R of background esti-
mates used for and of the way in which these R estimates are allocated
to the T samples. It must beremembered herethat the averaging is over
not only the population of sample counts for an expected total count of
t(B + C) but also over the population of background counts for a mean
total count of sB. In the analysis of a single set of T samples the frac-
tion of correct decisions n/T and the average confidence interval length
e /T will in general deviate from their average values in (50)
and (51) respectively. The deviation is measured in a mean square
average sense by the variances in (52) and (53).

Both variances
have a first term which is the variance if an independent background is

t(

tk
1
Ce
v
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supplied for each sample. The second term in each case is the additional -
variance because backgrounds are used for more than one sample. This
term is a product of two factors which measure the contribution due to

the variance of the background distribution and the way this distribution

is sampled (block pattern). The second factor is a minimum of zero

for Mv = I(R = T) and a maximum of (T - 1)/T for M1 = T(R = 1).

The above example illustrates that the stability of the frequency of
‘correct decisions for hypothesis testing and of the mean confidence interval
length will decrease as the size of the blocks with common background
correction increases. This effect can be offset by improving the precision
of the background estimate.

; An interesting and important question (which is not pursued here)
is the relative economics associated with various analysis schedules
obtained by varying background estimation precision and block size in the
light of sample and background analysis cost and the importance of correct
decisions.

The exact calculation of the variances in (52) and (53) for Poisson

chance variables with finite mean values must be done numerically.

Techniques such as those used to calculate 1 - BB(C) and E, could be

; 4
used for this purpose. The asymptotic variances can be calculated using
tables of bivarizie normal distribution probabilities.(w) Asymptotic
results are included below for hypothesis testing. An argument similar
to that following (24) shows that

L

g . 2 -1/2 :

= lim Ave [P%(y)] = BVN [k(1 + p) - n,, p/(1 + p)] (54)
2o 8B - 4w

(B + C) - +o

where the limit is taken with k = (1C) /(tB) }/2 fixed. In (54) BVN(h, 1) is

the joint probability that u <h and v <h where (u,v) has a bivariate
normal distribution with means zero, variances one, and correlation
coefficient r. With the results in (54) and (24) the limiting form of
Var (n/T), say LIMV(n/t), satisfies
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LIMV(n/T) = lim Var (n/T)
sB - =
t(B + C) -+
R (55) 3
- (1/T)F(h) [1 - F(h)] + (1/T)? Z M (M - 1) [BVN(h, 1) - Fz(h) L
v=l
where h = k(1 + p)_l/2 -n, r-= p/(1 + p) and F is the cumulative normal

distribution function defined in (10). An interesting property of LIMV(n/T)
is that it is a maximum for h = 0. Clearly, the first term is a maximum
there for F(0) = 1/2. For the second term

1/2

SL[BVN (h,1) - FXm)] = 2(FI(3D)  n) - F()) S-F(R).  (56)

This derivative is positive for h < 0, zero for h = 0 and negative for h > 0,

which implies the maximum property for h = 0.

For fixed p maximizing LIMV(n/T) over k gives

Max LIMV(n/T) = (1/4T) + (1/T)2 i M_(M_ - 1) [BVN(O, r) - 1/4],
k vl (57)

Another way of looking at the location of the maximum is that LIMV(n/T) is a
maximum for the alternative k for which the power of the asymptotic test

is 1/2. This alternative is k = na(l + p)l/2 or tC = na(l + p)1/2 (tB)l/z.
For the simplest case where each background is used the same

number of times (MV = M) the max function of (57) reduces to

Max LIMV(n/T) = (1/4T) + [(M - 1)/T][BVN(O,r) - 1/4].
k
(58)

The normalized form of (58) [the ratio of (58) for arbitrary M to 1/4T,
(58) with M = 1] is plotted in Figure 12. The family of curves for various
M values clearly shows that to keep LIMV(n/T) small as M increases

p must be pushed down toward zero.



HW-76279

8 =|m
/ H
7
6
E 5
£
>
E —
-
o}
) a4
N h
=
g _
~
(]
Z
3
2
1
|| | L |
0 1 1 1 1 1 2 35 10 25 100
10 5 3 2

Count Time Ratio p

FIGURE 12

Normalized LIMV(n/T) for 5% Level of Significance Decision Rule D
as a Function of Number M of Samples Corrected
g4 PicHLaNS. wash with Same Background and Count Time Ratio p

3

2 e

~yreant



- T T S S e e e T T P e~ =

-56- HW-76279

1/2, i.e., msd (M, p) is the

’

Let msd (M, p) = [Ml?x LIMV(n/T)]
maximum asymptotic standard deviation of n/T for fixed M and p.

Several useful benchmarks from Figure 12 are :

I. With M < 4, msd (M, p) <2 msd (1, p) for all p < +e.
II. With M < 10, msd (M, p) < 2 msd (1, p) for p < 1.

ITII. With M < 175, msd(M,p)§2msd(1,p§1/10.
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