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I. INTRODUCTION

1. General Contents

Counting data is the term which I propose to use loosely to describe
the great variety of results of measurements on amount and kind of radiation
emanating from a radioactive sample. In general, counting data are taken as
a function of timeafter a certain preassigned zero time in terms of events

per unit time, The instruments used to accumulate such data are

many and various. They have been described in a number of publications
(for a simple summary see another monograph of this Seriesl). The inter-
pretation and use of such data involve a number of complications, many of
a statistical nature. This monograph is intended to be a handy reference
manual of various ways of treating and interpreting data. It is also intended
to serve as a reminder of some neglected aspects of the treatment of data
and as a collection of information for those who are not familiar with the
field.

Chapter II, Mathematics of Radioactive Processes, is concerned with

the phenomenology of radiation: with its decay with time; with the formation
of radioactive species by nuclear reactions; with consecutive processes
(consecutive formations or consecutive decays) and competitive processes;
and with the relationship of the parameters of nuclear reactions and nuclear
processes to the raw data.

Chapter IIl on Mathematical Techniques gives a very elementary out-

line of the minimum necessary mathematics, matrix algebra, elementary
statistical mathematics, a description of the least-squares method of curve

s 2 e . .
fitting, and of the X test as a criterion of goodness of fit. There is also a

1G. D. O'Kelley, '"Detection and Measurement of Nuclear Radiation, "

NAS-NS-3105.



FOREWORD

The Subcommittee on Radiochemistry is one of a number of
subcomittees working under the Committee on Nuclear Science
within the National Academy of Sciences - National Research
Council. Tts members represent government, industrial, and
university laboratories in the areas of radiochemistry and
nuclear chemistry. Support for the activities of this and
other subcommittees of the Committee on Nuclear Science is
provided by a grant from the National Science Foundation.

The Subcormittee has concerned itself with preparation of
publications, encouraging and supporting activities in nuclear
education, sponsoring symposia on selected current topics in
radiochemistry and nuclear chemistry, and investigating specisal
problems as they arise. A series of monographs on the radio-
chemistry of essentially all the elements and on rediochemical
techniques is being published. Initiation and encouragement
of publication of articles on nuclear educetion in various
subject areas of chemistry have occurred, and development and
improvement of certain educational activities (e.g., laboratory
and demonstration experiments with radioactivity) have been
encouraged and assisted. Radioactive contamination of reagents
and materials has been investigated and specific recommendations
made.

This series of monographs has resulted from the need for
comprehensive compilations of radiochemical and nuclear chemical
information. Each monograph collects in one volume the pertinent
information required for radiochemical work with an individual
element or with a specialized technique. The U. S. Atomic Energy
Commission has sponsored the printing of the series.

Comments and suggestions for further publications and

activities of value to persons working with radiocactivity are
welcomed by the Subcormittee.

N. E. Ballou, Chairman
Subcommittee on Radiochemistry
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PREFACE

In this monograph I have attempted to collect a number of problems,
and their solutions, which are of importance to radiochemists who are in-
volved with the collection, reduction, and interpretation of various kinds
of data arising from measurements using counting equipment.

In cases where the treatment of a problem has been taken from another
author, I have endeavored to give full credit to the original source; errors
in transcription or rephrasing are entirely my own. When no credit is given,
I accept responsibility for the treatment and for the unhappiness which
some of my procedures will cause more qualified statisticians. My only
defense is that I am attempting to write in a language which will be
comprehensible to chemists,

This monograph has been prepared at the request of the Subcommittee
on Radiochemistry of the Committee on Nuclear Science, Division of Physical
Sciences, National Academy of Sciences - National Research Council, as one
of the series of monographs on the techniques of radiochemistry which the
Subcormittee is sponsoring. I would like to express my appreciation to the
members of the Subcommittee for their encouragement; to Drs. E. Kaplan
and H. B. Levy for their helpful discussions of the problems which arose
during preparation of the manuscript; to the secretarial staff of the Radio-
chemistry Division and to the Technical Information Division of the
Lawrence Radiation Laboratory for their assistance in preparing the manuscript.

This work was performed under the auspices of the U. S. Atomic Energy
Commission.,

P. C. Stevenson
Lawrence Radiation Laboratory

University of California
Livermore, California
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description of a so-called "F' test which is used to aid in making a decision
whether the form of equation being fitted to the data is proper.

Chapter IV déscribes the statistical problems particularly associated
with counting data. Variance of a single counting measurement is discussed
in some detail. The effect of making a measurement involving small
sampling, which is the usual method of procedure, is described and is
followed by a description of the alterations in the treatment which should be
used when large sampling or low count rates are involved. Statistical
problems raised by correction for background are discussed, as are errors
of extrapolation.

Chapter V is a detailed description of resolution methods applied to
decay data, which involve separating a given set of data into components
each attributable to a particular radioactive species. Proper weighting for
least-squares analysis is discussed. There is a description of sources of
variance and of the effect of input parameters such as half-lives. Criteria
for data rejection are discussed, as are analyses of replicate samples.

Chapter VI is a description of the problems involved rin identification
of the components of the system and measurement of their decay character-
istics ; in particular, their half-lives. The problem of purity is discussed.
The problem of measurement of half-life of single-component systems of
short half-life and of long half-life is considered in some detail. Another
problem considered in this section is the adjustment of half-lives with the
best possible precision in a known multicomponent system where the half-
lives are not well known. This section also discusses the detection of
multicomponent systems, the determination of the number of components in
a system, and the measurement of the half-lives where the system components
are completely unknown.

The last section discusses problems raised by the existence of dead
time and coincidence phenomena. Dead time losses in counters are dis-
cussed. Live timers, which are mechanical methods of compensating fer
dead time loss, are mentioned. Regularizing action of scaling circuits is
discussed in some detail. Measurement of coincident events and the problems
raised by chance coincidences are discussed and the effect of coincidences
on discriminated counts are considered. Finally the measurement of

absolute counting efficiency by coincidence techniques is mentioned briefly.



II. MATHEMATICS OF RADIOACTIVE PROCESSES

1. Assumptions

It will be assumed in this section that: (a) the intensity of radiation
emerging from a sample of radioactive material can be measured with high
precision and with known, or at least reproducible, efficiency; (b) that all
atoms of a single radioactive species are identical in their nuclear properties;
(c) that the intensity of the radiation originating in the sample is due to the
nuclear properties of the 'species present; and (d) that each radioactive event
signals the dis‘integration of one atom of the radioactive species and the
formation of one atom of a new species. Assumptions (b), (c), and (d) have
been verified experimentally; assumption (a) is adopted in this section for

simplicity to represent an ideal case and will be discarded in later sections.

2. Fundamental Law of Radioactive Decay

The assumptions listed above lead to the obvious conclusion that the
amount of radiation originating in a sample is directly proportional to the
amount of radioactive material present (although the constant of proportion-
ality varies from species to species). For a single species, if x is the
number of atoms present at time t, the intensity of radiation in events per
unit time is given by the rate at which the active species is disappearing

(assumption (d)), so that the intensity of radiation is

dx
=T = + Ax (I1.1)

where X\ is the constant of proportionality characteristic of the species. X\

is referred to as the decay constant of the species. The negative sign in the

equation arises from assumption (d) above, that one radioactive event
corresponds to the disappearance of one atom of the species. (It should be
noted that we are ignoring the discrete nature of atomic matter in this
section and treating x as a continuous variable. This is consistent with our
first assumption.) Equation II.1 represents one statement of the fundamental
law of radioactive decay. It can be integrated immediately to give

) -X(t-to)
X =Xx,€ (I1.2)



where x has the value x

at the arbitrarily chosen time t The product

Ax can be seen from eqtgation II.1 to represent the disintggration rate of the
species; if we measure the radiation from the sample with an instrument
having an efficiency n for the characteristic radiations of our species, the
observed ''counting rate' will be given by nAx. Both x and mAx can be seen
from equation II.2 to decrease exponentially with time.

A convenient measurement for purposes of discussion and observation
is the time interval required for the activity of the species in the sample to

decrease to one-half of its initial value. This interval T1/2 is referred to

as the half-life, half-period, or simply period. Its value in terms of A can

be derived by setting x equal to xO/Z in equation II.2, so that

-\T
1
e /2 _1 (I1.3)
2
and therefore
_In 2
Tl/Z =X . (I1.4)

Tl/Z is expressed in time units and may be specified in units of any
convenient size. \ is expressed in units of reciprocal time; the nature of the
units used is of particular significance when calculating disintegration rates
from numbers of atoms or the reverse, since X\ and Ax must be expressed
in the same units.

If more than one species are present, the effects are additive, that is

-xit(t—to)
Counting rate = Zni )\i X, =Z n; )\i X.q © (II.5)
i i
In such a system, each separate species is referred to as a component.
The process of identifying the various components in an experimentally ob-
tained set of data and of separating the effect due to each is called resolving
the decay data. Information to be obtained in an experiment on radioactive
material is usually gained from a measurement of the amount, the half-life,
or the nature of the radiations of one or more components separately; it is
with the resolution of multicomponent systems that the greater part of this

paper will deal.
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The most elementary technique for resolving data on radioactive decay depends
on the fact that in any multicomponent mixture, there is usually one component much
longer lived than any of the others. At late times, therefore, the activity still remain-
ing in the system is likely to be due to a single long-lived component. If the activity of
the system at various times is plotted as ordinate against time as abscissa on semi-
logarithmic graph paper (see Fig. II.1), and a smooth curve drawn through the points,
the last portion of the curve obtained will frequently be a good approximation to a straight
line. (If only one component is present, the entire curve will be a straight line.) This
straight line can be extrapolated back to the times of the early observations and the
contribution of the longest lived species subtracted from each gross amount. The dif-
ferences are then replotted and the procedure repeated for the next-longest lived species.
This technique is simple, but not very precise and inevitably prone to subjective judg-
ments. |

The straight lines obtained from the above-~described plots may be used to get an
estimate of the half-lives of the components by observing the time required for the amount
of each component to decrease by exactly a factor of 2, since the linear nature of the
plots makes interpolation to the desired activity level particularly simple. Somewhat
better precision may be obtained by observing the time required for the activity to de-

crease by an integral power of 2, and dividing that time by the power used.

3. Formation of Species in Nuclear Reactions 2

Radioactive species are formed either by nuclear reactions between nuclei and sub-
atomic particles or photons or by spontaneous radioactive decay of other radioactive
parent species. In this section we shall consider the number of atoms x of a radioactive
species present in a sample of material exposed to conditions leading to the formation of
the radioactive species, e.g., in a cyclotron beam or a flux of neutrons in a reactor.

Let the flux of particles at each atom in the target material be ¢. The rate of the
nuclear reaction will be proportional to the flux integrated over the entire sample. If
the flux is uniform, this is simply the product of the flux ¢ by the number n of atoms in
the sample; if the flux is limited to a beam passing through a sample of uniform thickness,
it is the product of the total beam current by the thickness of the sample in atoms per
unit area, In actual practice the flux is usually not uniform; gradients in the flux in a
sample of finite size may arise either from the gradient in space of the flux into which
the sample is inserted or from the attenuation of the flux by the sample itself. One
must then integrate the flux at each infinitesimal volume element, times the number

of atoms of target in that volume element, over the volume of the entire target. In

2
See Rubinson, J. Chem. Phys. 17, 542 (1949).
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either case, we shall use the symbolic product nd to represent this integral.
We shall define a reaction cross section o to be the constant of proportionality
which converts the product n¢ to the actual rate of the nuclear reaction. It
is apparent that if we consider the reaction to be occurring between an
assembly of flying particles and a collection of atoms, then ¢ is simply the
""'target area'' presented to the particles by a single atom.

The net rate of formation, however, contains another term, since the
species being formed is radioactive and hence subject to the laws governing
radioactive decay. The expression for the net rate of formation of the species

is therefore given by

% = ndo - Ax (II.6a)

where the second term on the right arises from the decay laws, expressed in
the form of equation II.1. In most cases, nd¢ may be considered constant,
since most methods of inducing nuclear reactions are extremely inefficient
in terms of conversion of the target material. If this assumption is made,
it is obvious that, whatever the starting conditions, the system will tend in
the long run to an equilibrium value of x, since for small x the derivative is
positive so that x is increasing, while for large x the derivative is negative
so that x is decreasing. When the system has its equilibrium value of x, it
is said to be saturated.

If n does not change with time, equation IL.6a can readily be integrated

by rearranging the terms and applying an integrating factor, as follows:

dx _
Ty + \x = néo, (IL.6b)
eMt (3—X+ Xx) = néo e)\t, (II.6¢)
t
a-ci— (x e)\t) = ndo e)\t, (1I1.64)
At
xe XO e)\to - n%cr (e)\t _ e)\to)’ (IL6e)

and finally,

-N(t-t.)
x =x,e +2F[1—e OJ. (IL.7)



In this equation the first term represents the behavior of the radio-
active material present at the time tys decaying away according to equation
I1.2, while the second term represents the buildup toward equilibrium of the
material formed by nuclear reactions in the time following to.

Equation II.7 only applies as long as the reaction is continuing; when
the cyclotron beam is turned off or the sample is removed from the reactor,
the active material present begins to decay away, following equation II.2 with
ty for that equation being taken as the time of the end of the irradiation. The
counting rate measured at some later time can always be extrapolated back
to the end of the irradiation if the half-life is known; in the subsequent
discussion it will be assumed that this has been done.

If n¢ is not constant with time, equation II.7 cannot be obtained in
analytic form unless the dependence of n¢ ont is expressed analytically.
Treatment of equation II.6a proceeds as before up to the integration step

I1.6e, which then becomes

d(xe™) = ¢ M no(t) dt (11.8)

leading to
-\ (t-t.) ) t
X =X, e 0 + oe At S nd)('c)e)\t dt (I1.9)
to
which usually must be evaluated numerically. In what follows we shall
assume that flux at any point in the target is constant with time.
In a typical experiment, inactive material is irradiated at a constant

rate for a defined length of time in a constant flux; x, is zero and equation

0
I1.7 can be used to give a measurement of ¢ if ¢ is known, or of ¢ if ¢ is
known:
. -A(t-t,)
x:% [l-e OJ, (I1.10a)
_ 1 AX _ 1 counting rate
o = ¢n r— —x(t_to)— = T]q)n -K(t-to)— y (II.lOb)
1 ~-e 1 -e
- J -
_ _1_ X 1 counting rate
**:m T -\t-t. )] " non ~a(t=t )7 (II.10c)
0 0
l-e l - e
- -/ -




In either case the detector efficiency n must be known, which is fre-
quently not the case; if 1 is not known relative numbers can be obtained,
since n does not vary from experiment to experiment if the equipment is
reliable.

If a calibration experiment is made with a known amount of material

in a uniform flux, a useful ''figure of merit'" néo may be obtained:

counting rate

~Mt=tg) - a
n[l - e J

This figure of merit may then be applied to irradiations of unknown mate-

néc = (I1.104)

rials in the same flux to determine the amount of the target species in the

unknown sample, since

counting rate

N N(E-t )
1

This is the basis of the very sensitive analytical method known as activation

(I1.10e)

analysis. Care must be taken to reproduce the flux exactly; in practice, the
calibration sample and the unknown are usually run simultaneously.

Returning to equation Il.6a, it is sometimes necessary to modify our
simplifying assumption. Development of high-flux reactors and other
devices which are relatively efficient, though rather spectacularly short-
lived, render it necessary to consider the case in which the amount of target
material is appreciably depleted during the course of the experiment. For
simplicity, we shall assume that the flux in this case is constant and uniform.
We then have, since formation of one atom of x implies destruction of one

atom of n,

dn _ _
Et_ = -dnag (II.I].)
so that
'¢0'(t"t0)
n=n_e (I1.12)

which may be substituted into equation II.6a. Following a method of integra-

tion analogous to that used on equation II.6a, we finally get



(I1.13)

—x(t-to) c]>n0cr e [1 ) e-(x-qm)(t-to)]

After very long irradiation times, this expression tends toward zero,
owing to complete conversion of the target material followed by radioactive
decay of the product. If we maximize x with respect to time, we can easily
see that the greatest amount of product is present in the target at a time
given by (assuming Xy = 0)

-t =én(k/¢0) _ (I1.14)

1:rn 0 N - oo

Finally, if the product itself reacts with the flux, as it usually does,
we must modify equation II.6a still further by addition of a term -¢0'X x
where o is the reaction cross section of the species x with the flux. It is
obvious that the only difference made in the mathematical form of the equation
is the replacement of the constant A\ with a new constant \ + ¢0'x. The
integrated form of the equation is then readily obtained by substitution in
equation II.13, and the time of maximum production by substitution in

equation II.14, giving

(Ao )(t-t ) & “itt) ( (
-(At+do )(t-t n.ce (Nt do_-do)(t-t.)
_ X 0] 0 x 0
X =x,e€ + T ¢0_x e [1 - e ], (II.15)
)\+¢0'X
In| —————
t -t = ( bo ) ) (I1.16)

m 0 )\+¢o-x—<1>0'

4. Consecutive Disintegrations

It frequently happens that the disintegration product of a radioactive
species is itself radioactive. The mathematical analysis of the system is
quite straightforward; it is only necessary to keep in mind, first that the
fundamental law of decay applies to all active species, and second that
disintegration of one atom of the '""parent" species corresponds to formation
of one atom of the '""daughter'' species.

Let us consider a simple system, a species 1 decaying to a species 2
which decays to a stable end product. We have for the parent species

“A(t-t )
x; =X, . (II.17a)
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Ny X, =7\ e-)\l(t-to) (I1.17b)
MM % T M * 0 :

for the amount and counting rate, respectively, of the parent species. The
net rate of formation of the daughter species is given by

dx -\ (t-t )
—t£=-)\x+)\x=-)\2x+)\x e1 0.

3 2% T A ¥ 2T M %10 (I.18)

Equation II.18 may be integrated in a manner analogous to that used for

equation Il.6a to give

-, (t-tL) A =\ (t-t.) -\, (t-t,)
X, =X e 2 0 +—-—l—— xlo[e ! 0 - e 2 OJ, (II.19a)

2 20 )\2 - )\1

A (t=t) Mo Ag =N, (t=t.) -\, (t=t,)
_ 2 0 27172 1 0 2 0
T]Z)\ZXZ —nz)\zxzoe +leo [e -e . (II.19b)
(In the highly unlikely event that xl = )\2 =\, it is a simple matter to show
that
-)\(t-to) -\ (t—to)
X, =X, _ € +)\x10 (t-to)e (II.19¢)

=N (t-t,)
either by rederiving equation II.19a or by extracting the factor e 1 0

from the parenthesis in equation II.19a to leave a term [1 -e )\Z_xl)(t-to)J .
This term approaches ()\2 - Xl)(t - tO) as a limit as ()\2 - )\1) approaches
zero. This case will not be considered further.)

The total counting rate of the sample is obtained by adding the rates
given by equations II.17b and II.19b to give

X (t-t) -\, (t-t )
Counting rate = LIRSEITE tn, )\2 X509 €

no Ay N A (Bt ) AL (t-t.)
T N P L BT
A, - %, ‘10

Combining terms with like exponential factors, we get
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N, (np +my) - )‘1“1:}

. Ay (t-tg)
Counting rate = M Xy © Xy = N7

F N, e — (I1.21)

”‘z(t'to)[xzo TS LS xlo]
2 "M

It can easily be seen from equation II.21 that the decay of a parent-
daughter system resembles that of any two-component system, and can be
resolved on that basis. The half-lives of the apparent components are the
actual half-lives of the parent and the daughter. However, when performing
an experiment in which the product of interest gives rise to an active daughter,
the presence of the daughter activity may lead to serious error unless an
appropriate correction factor is applied. Let us assume that an irradiation
is made and that a product (species 1) is separated which has an active
daughter (species 2). The product is purified, the decay of the sample is
followed for a time and the data resolved into its two components. We then
attempt to apply equations II.10b or II.10c to the system, using the resolved
counting rate of the component having the half-life of species 1. At the time

of purification of the parent species, equation II.21 gives

Ay nptmy) - N ”1]

—— (I1.22)

Counting rate (1) =\, x
171 > 1

while in the absence of the daughter the counting rate at the same time would
be

Counting rate (no daughter) =\, x

I (11.23)

The ratio of the observed to the desired rate is the growth factor g, which is

independent of time (since both numerator and denominator in the ratio have
the same time dependence) and consequently applies at the end of the

irradiation. It is given by

A
2 12

g1 +(—._ )(_) . (11.24)
IS TA

Equations II.10b and II.10c apply to the counting rate in the absence of
daughter activity; therefore the observed resolved counting rate must be

divided by g before being inserted in these equations.
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It will be observed that, unless n, is very small, as XZ approaches
M

approximately proportional to the reciprocal of their difference. Since the

the value of g becomes very large either positive or negative and is

values of the \'s are not in general known with extreme accuracy, the
accuracy of their difference becomes extremely poor as that difference
becomes small with respect to the \'s themselves. Hence in parent-
daughter systems in which the two components have comparable half-lives,
it is very desirable to count with an instrument which is as specific for the
detection of the parent as possible. If this is not practicable, it may be
advisable to base the experiment on a direct measurement of the daughter
activity, as discussed in the next section.

It should be noted especially that when the daughter is considerably
longer lived than the parent ()\1 > )\2),’ the value of g is less than 1, that is,
that the presence of a long-lived daughter actually decreases the apparent
activity of the parent (see Fig. II.2). It is well known that the presence of a
short-lived daughter increases the apparent activity of the parent, since at
equilibrium every disintegration of the parent is shortly followed by a
disintegration of the daughter, but the opposite effect of a long-lived daughter
is likely to be forgotten, since it is not nearly as obvious. Presence of a
short-lived daughter will usually cause an actual increase in the counting
rate at early times which is quite obviously different from a simple two-
component decay; the decay of a system containing a long-lived daughter

cannot be distinguished from that of a simple mixture of species.

5. Use of Daughter Activities to Measure Nuclear Reactions

It is sometimes convenient to obtain results from an experiment by
analyzing, not for material formed directly, but for a daughter species
which may be longer lived, less subject to errors or interferences, or more
tractable chemically. In this case the interpretation of the results is
straightforward, but requires some thought. We may define two separate
cases: case 1, in which the parent is purified and the daughter is allowed
to grow into the purified sample, and then is separated and counted; and
case 2, in which the parent is not separated, but the daughter is separated

directly from the irradiated material.
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Case 1: This technique is usually used when the half-life of the parent
is much longer than that of the daughter. A typical example is the usual
method for the analysis of Srgo. In ordinary fission product samples the
radiations of Sr90 constitute a very small fraction of the total radiations of
the strontium fraction. Furthermore, one of the competing species (Sr89)has
a half-life of almost two months, so that waiting for the shorter components
to decay away, leaving relatively pure Srgo, is out of the question. The
analysis may readily be performed, however, by separation and counting of

89

the daughter species Y9O’ since Sr~” has no active daughter. It is well to
remark that, prior to purification of the strontium fraction, it is necessary
to wait for several days after the irradiation in order to permit the essentially
complete decay of Srgl, which is initially present in very large amounts and
which does have an active yttrium daughter, as will be discussed under case
2 below.

The analysis is carried out as follows:

1) At the end of the irradiation, the amount of the parent species is

(from equation II.10a)

X, A
x| = %11_6 (1 e ! ) (IL.25)

where A is the duration of the irradiation.
2) After a waiting period of duration w, the parent species is purified.
The amount present at this time is (from equationsII.25 and II.2)

-\, A -\, W
=9ﬂ' (l-e l)e 1 .

X
1w )\1

(I1.26)
3) The purified parent material is allowed to stand for a time t to
enable the daughter species to grow into the sample. The time t is usually,
though not always, long compared to the half-life of the daughter, since this
simplifies the analysis of the results. After the time t has elapsed, the
daughter species is purified and counted. The amount present at the time of

Purification is (from equations I1.26 and II.19a)
“N Ay =N W =\t -2t
x:cbn‘o- 1 -e 1 e 1 e 1-e 2 (I1.27a)
2 )\2 - )\1

and its counting rate is
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énon,\ -N,;Ay -Aw =Nt -\t
Counting rate = — 22 (l -e 1 )e 1 (e L e 2) (I1.27b)
] )‘2 - )\1

where, as usual, the counting rate is corrected to zero time - in this case,
the time of separation from the parent.

In the ideal case, when the parent species is extremely long-lived and
the growth period t is long compared to the half-life of the daughter, the
expression simplifies to

¢nonzxz
Counting rate = W . (Ideal Case) (I1.27¢)
Equation II.27b can be rearranged to give information concerning ¢,

o, or n in the manner of equations II.10b, II.10c, or IL.10e.

Case 2: This technique is usually used when the species directly formed
in the reaction of interest is relatively short-lived, decaying into a longer
lived species which is more convenient to work with for any one of a number
of reasons. A typical example is the usual analysis for Sr91 formed in
fission. This species is most conveniently measured by analyzing for the
daughter product Y91, which is longer lived and less subject to interference
from isotopic activities. The analysis is carried out in a different manner
from that described under case 1, as follows:

1) During an irradiation of duration A, the amount of the parent species

builds up according to equation II.10a, so that

AL A
=9;‘—" (1 e ! ) (11.28)
1

The daughter species also builds up, in a manner to be derived as follows:

%10

dx -, t
) (I1.29)

2 _ - 1
rrath )\Zx2+)\1x1 = )\Zx2+¢n0' (1 - e

Using a method of integration like that used for equation II.6a, letting

t go from zero to A and letting %50 be zero,

NA e s
séno|io& e 2 lc-ce . (11.30)
A iR

*2n
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2) The sample is allowed to wait for a time w and the daughter
species is then purified and counted. In contrast to case 1, the parent
species is never purified. Egquation II.19a then applies, with %50 of I1.19a
replaced by X5 A from equation 11.30, X10 obtained from equation II.28, and
t -t equal to w. This gives, at the purification time,

Lo 28 e e A, w

X, = ¢tno| —r— - e ~ e
2 XZ N )\2

A, W

-\ A Ny w
+XJ’_’i£)\_(1-e 1)(e e 2 ) (I1.31)
2 "M

If the daughter activity is extrapolated back to the end of the irrad-

iation in the usual way, we get

-)\ZA LA -(Xl-XZ)A -\ A -()\l—)\z)w
_¢n0_1-e eZ 1 -e +1-e l -e
x. = -
2 A, Moo N oA,
(I1.32a)
and
A4 A A -()\I-XZ)A
Counti te = m\, dno{ 2 e 2 l-e
ounting rate = n,\, ¢no N Y
2 1 2
‘ (1 i e—)\lA) L e—-()\l-)\z)wj
+ — (11.32b)
1 2

If )\1 is sufficiently large compared to )\2, and w is sufficiently large
compared to the parent half-life, then equation II.32b is well approximated
by equation II.10a. This demonstrates that formation of a species by way of
a negligibly short intermediate species is not appreciably different from
direct formation. It should be noted that equations I1.32b and 1I.27b are not
equivalent.

An important subcase of case 2 should also be considered. It some-
times happens, for example in the formation of the primary fission products
Or in reactions where the product formed has a metastable isomeric state,
that both the parent and the daughter species are formed directly by nuclear
reactions. Analysis of the data in such é case is far from simple. Equation

I1.29 must be modified to
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dx, -Xlt
rrathi )\Z X, + d;»no'1 (l - e ) + ¢~n0‘2 (I1.33)
which upon integration gives
1 - e-)\ZA _)\ZA 1 - e_()\l-)\z)A
X, = én (0'1 + 0’2) ———— ", ¢ Y . (I1.34)
2 1 2
Treating the sample in the same manner as before, we arrive at the
results
“A,A LA -()\I-XZ)A
x-d)n((r-i-o')—1—"—6—-—---—--—-O'e2 1 -¢
2 1 2 N, 1 )\1 -\,
(1 ) e-xlA) [1 ] e-(xl-xz)vf]
+ o Y ,  (II.35a)
1 2
1 - e-)\ZA -)\ZA 1 - e_()\l-)\z)A
Counting rate = nz)\z én (cr1 + 0'2) — T "~ 9, e Y
2 1 2
(1 ) e-xla) [1 ) e-(xl-xz)w]
+ o L .(II.35b)
1 N o- )\2

We then see that if the experiment is intended to give a measurement of
cross section, two runs must be made with times A and w selected to give
substantially different values of the exponential factor, since two separate
cross sections are involved; furthermore, we see that unless the later terms
in the bracket are negligibly small compared to the first term (which, for
comparable cross sections, will only happen if )\1 > )\2, that is, for a very
short-lived parent), the effective reaction cross section is not simply the
sum of the two cross sections involved, but depends on the time schedule of
the experiment in a rather elaborate fashion. In cases where the half-lives
are comparable to each other and to w and A , the errors caused by this
effect may be large indeed.

If the two species concerned are nuclear isomers, purification of the
daughter from the parent is not usually practical in an analytical procedure.

In this case equation II.35b still applies, with the value of w taken as infinite.
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It is also of interest to note that if both species can be counted, either
in the same sample or separately, then the counting rate of the parent
species furnishes a measure of o, if equations II.24 and II.10b are used.
This value may then be used in equation II.35b to permit the value of o, to

be calculated.

6. Branching Decay

Some radioactive species may follow either of two decay paths to

produce either of two decay products. (Am242, indeed, follows three!) The

ratio between the rates of the two kinds of disintegrations is fixed and

characteristic of the species, and is known as the branching ratio. Many

examples are known in the natural radioactive series — UX1 (Th2 34) may

23lm

) or

decay by beta emission to either one of the two isomers UX2 (Pa
214

uz (Pa23l); or RaC (Bi214) may decay by beta emission to RaC' (Po

by alpha emission to RaC" (TIZIO). This behavior may be described

) or

mathematically by separating the decay constant \ of equation II.1l into two

partial decay constants, Xla and )\lb' whose ratio is the branching ratio.
There is no effect of branching decay on the time dependence of the
counting rate if neither of the daughter species is active, although the counter

efficiency is no longer simple:

Ma Mb
LD W Na T M Mat Mot M Mp: (11.36)

If the daughter species are active, equations II.1 and II.18 become

dx1
T = O, PN X (I1.37)
dea
I = - )\Za X5 + )‘laxl’ (I1.38a)
dx
2b _
T )\Zb be + )\lb Xl. {II.38b)
Upon integration, these equations give
=Ny _EN (-t )
la "1b 0

X)Xy e . (II.39a)
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oy el . Ma *10 [e'("la”‘lb)(t‘to)
2a - *2a0 Naa " Ma - Mb
A, (t-t.)
e 2a OJ, (I.39b)
e e')‘Zb(t'to) . Mb *10 l:e_()‘la+)‘1b)(t_t0)
2b - *2b0 P S O
A, (t-t.)
- e 2b 0 J , (II.39c¢)
and therefore
SN, N ) (t-t)
Counting rate < ul ()\la + )\lb) X0 € la""1b 0" 4 uPs )\Za X520
« e')‘Za(t'to) N N e')‘Zb(t'to) N Ma M2 M2a X190
2b *2b0 “2b X

22~ Ma " Mip

')‘Za(t'to)J Mb b M2b *10 [e’()‘la“‘lb)(t'to)

e LS S Sy

g [ -(X1a+)\1b)(t-to)
e
2b la b

- e (1I1.40)

-be(t—tO)]
The apparent counting rate of the parent species contains a growth

factor g which is calculated as before by dividing the observed counting rate

of the component with the parent half-life by the counting rate calculated for

the pure parent species, to give

g =1 +( )\la. ) ( )\Za ) M2a +( )\lb )
A IR T T S N Y A TR S O

X( ob ) N2b
MNob T Ma T M/ M

(I1.41)

which is analogous to equation 11.24. If only one daughter species is active,
M,y May be set equal to zero in all the above equations.

Branching decay systems are frequently described in terms of partial

half-lives, defined by
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, N+ A
2 M 1b
Ty, = 1)?1 = axl Ty (11.42a)
a a
N+ A
Ty, =22 . la b g (I1.42b)
b Ay A 2

7. Decay Chains With More Than Two Consecutive Decays

The mathematical techniques applied to two-membered decay chains
can readily be extended to multimembered chains, including independent
formation and branched decay if necessary. The possible permutations and
combinations are so numerous that it is not practical to investigate them in
detail; it is enough to recapitulate the mathematical technique used, and to
describe another technique which may simplify the labor of deriving the
sometimes very elaborate formulae which describe the behavior of such
complex systems.

The method of derivation is summarized:

1) Write the differential equation for each member of the chain, as
follows: The first time derivative of the amount X, of each species i is equal
to the sum of the following three terms:

a) The negative of the product of x, by the total decay constant
)\i of species i.

b) The rate of formation of the species i by any induced nuclear
reactions occurring in the system. This expression will in
general be the product of a reaction cross section T2
number of atoms n; of target material, and a flux ¢i. If more
than one reaction is going on, the term for each reaction is
written and all such terms are summed. d>i and n, may be
functions of time — for example, the target material may be
a species which is itself formed by a nuclear reaction. If
X, is being consumed in a nuclear reaction, the term for
this reaction is given a negative sign and X, is used in place
of n,.

c) The rate of formation of the species i by radioactive decay
from one or more parent species. These terms are always

given by the product of the number of atoms of the parent
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species present (which is a function of time) by the partial
decay constant of that parent species for formation of the
species i. Terms from various parents are additive.

2) Start with the equation for the first member of the decay chain.
This equation can always be integrated directly, like equation II.1, or by
the use of an integrating factor, like equation Il.6a, depending on the form
of the equation.

3) Substitute the expression obtained into the equations for each
member of the second generation.

4) Rearrange the terms in the equations so obtained as in equation
II.6b and integrate in the same manner to obtain expressions for the amount
of each second-generation species present.

5) Substitute these expressions into the equations for the third-
generation species and so on.

6) Multiply the amount of each species by its decay constant and
counting efficienc.y to obtain the counting rate of each species as a function
of time. Sum the counting rates where applicable to get the total counting
rate of the sample.

7) For each change in the experimental conditions — stopping of an
irradiation, purification of a parent species followed by subsequent counting,
and the like — use the above technique to give the number of atoms of each
species present at the instant of the change; then use this expression as the
starting condition for that species and repeat the derivation, using suitably
modified differential equations.

The integrands to be integrated will never be more elaborate than
simple exponentials unless the system is exposed to a time-dependent flux.

A second approach, which involves somewhat less labor for complex
chains, is based on the fact that the amount of any species in a system is
always expressible by a constant term (which may be zero) plus a sum of
exponential terms involving only the total decay constants of that species and
its progenitors in the system, and no others. These decay constants never
appear in combinations in the exponents. We can therefore proceed as
follows:

1) Write the differential equations of the system, as before.
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2) Express the amount of each species present as a linear combination
of the proper exponentials with undetermined coefficients, plus an un-
determined constant term.

3) Apply the known starting conditions of the system to give a set of
equations relating the unknown coefficients.

4) Substitute the assumed expressions in the differential .equations.

5) Obtain additional relations between the coefficients by setting the
coefficient of each exponential term in the resulting equations, and the
constant term, equal to zero. These relations, together with those obtained
in step 3 above, will always be enough to determine the coefficients.

6) Calculate counting rates as before.

An example follows. Let us assume that species 1 is formed at
constant rate in a nuclear reaction; that it decays by branching decay to two
species 2a and 2b; that each of these decays to the same active species 3,
which decays to a stable product; and that the starting condition is that the
original system contained no active material. For simplicity, we shall
measure time from the start of the reaction.

The differential equations are:

dx1

dxZa

Tt 7 M2a ¥2a M *re (I1.43b)

dx

2b _

It - " M2b Fap b *re (I.43¢)

dx3

e VT G R (11.43d)

We assume that
-, X, 0t

x, = A +B e la "1b7 (I1.442)

(N, Nt ALt
_ 1a" ™Mb 2a

*2a ~ AZa. + BZa © + CZa e ! (11.44b)
=Nyt )t Aot

% = A. +B.. e 1z b o 2b (IL.44c)

2b 2b Zb 2b



-24-

(NNt -, t At -\, t
_ la "1b 2a 2b 37
x4 = A3 + B3 e + C3a e + C3b e + Dy e ’ (11.444)
and therefore from the starting conditions (t = 0)
A1 + B1 =0, (IT.45a)
AZa + BZa. + CZa =0, (IT.45b)
A2b + BZb + C2b =0, ‘ (II.45c)
A, +B,+C, +C,.  +D, =0. (I1.45d)

3 3 3a 3b 3

Substituting the values of the x's from equations II.44a through I1.44d
into equations II.43a through I1.43d, performing the indicated differentiations,

and collecting terms, we get

0=- ()\la + )\lb)A1 + ¢no,. (IT.46a)

SO0, ANt

- : la "1b

0= A - X Ay )+ [)‘laBl -yt Ma )‘lb)BZa:}e ’
(11.46b)

. S0 A

0= (A &) = Ay A5) +["1bBl “op T M T )\lb)Bij]e ’
(I1.46¢)

0= (N Apg T 0 A ~ A3Ag) + [:()\la T T A)By N, Byt Ay BZb]

(Mgt At

At
X e + [()\Za' - )\3)C3a + )\Za CZaj‘e

‘2a

-)\th

+ [(be A3)Cop + Ny ch]e (I1.46d)

From equation II.46a we get A1 and from that and equation 1I.45a we get

Bl' We then let the coefficients of each exponential term, and the constant

term, equal zero separately in equations II.46b and I1.46¢ to give

N A -, A

la 1~ P2a 82270 (I1.47a)

Ma By -0, - 0, (I1.47b)

2a " Ma T Mp)By, T
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A

N - X5 A =0, (I1.47¢)

Ib"'1 Zb " 2a

N B, = (N

Ib™1 A

0. (I1.47d)

2b " Ma " Mp!Byyp G

Substituting the determined expressions for A1 and B1 we get
expressions for AZa’ BZa' AZb’ and BZb’ and by substituting these in
equations I1.45b and I1.45c we get expressions for CZa and CZb' We then
let the coefficient of each exponential term in equation I1.46d, and the
constant term, each equal zero and by substituting in the expressions already
determined for the first six coefficients we get expressions for all the rest
except D3, which is then obtained from equation I1.45d. Some labor may
often be saved by evaluating only the minimum number of coefficients re-
quired to give the desired information — that is to say, the factors making
up the observed counting rate of the components being analyzed in the
experiment.

It should be emphasized that in any system, whether a simple mixture
of species or a complicated tangle of consecutive or branching decays, the
decay of the activity of the system can be described by a sum of exponential
terms, one component for each species in the system; and that the half-
lives of the components are identical with the half-lives of the species in the
system. Knowledge of the growth and decay formulae derived in this
chapter is not necessary for the resolution of such data into components; it
is, however, most definitely necessary for the interpretation of the resolved
data in terms of measurement of fluxes, cross sections, or other physical

properties asscciated with the experiment.
III. MATHEMATICAL TECHNIQUES

1. Nature of the Problem

Measurements of radioactivity are, like all physical measurements,
subject to both random and systematic error. Unlike many physical measure-
ments, however, measurements of radioactivity are plagued with inherent,
unavoidable random errors of quite appreciable size which are due to the
Very nature of the phenomenon and cannot be eliminated by any refinement of
technique. As a result, the elaborate formulae of the preceding chapter must
be considered to represent an unattainable ideal. Our initial assumption of

Precise data must be abandoned.
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We are left with the rather thorny problem of developing é.n objective
technique for using admittedly imperfect data to make a '"best'' estimate of
the quantities of interest in the formulae of Chapter II; of developing a
definition of ""best' in this sense which is both objective and justifiable; and,
further, of forming an estimate of the reliability of the estimates so obtained.
In this chapter it has been my objective to collect in one place an assortment
of mathematical techniques which apply to the problem. Full development of
these disciplines has not been attempted and is, indeed, beyond my competence;
I have endeavored to include only those facets of the subject which apply more

or less directly to the analysis of data on radioactivity.

2. Matrix Algebra

Considerable use will be made of matrix algebra and matrix-vector
notation in our subsequent development, since the notation is both concise
and elegant.

A matrix is simply a rectangular ordered array of numbers arranged
in horizontal rows and vertical columns. The coefficients of a system of
simultaneous linear equations, for example, constitute a matrix. If we re-
gard a collection of matrices as a set of mathematical entities, and wish to
develop an algebra to handle relationships between them, it is necessary to
postulate a set of self-consistent axioms. An algebra can be developed on
the basis of any such set; since it is extremely useful to relate the algebra
of matrices to the more ordinary algebra of linear equaticns, our axioms
will be derived from those of ordinary algebra through consideration of sets
of linear equations.

Let us consider a set of simultaneous linear equations. Such equations
consist of statements that the value of a specified linear combination of the
members of a set of quantities x, is equal to one of the members of another
set of quantities, yj. If all the x, are known, an unlimited number of Yj can
be derived by varying the coefficients of the X, in the linear combinations.

Let us consider a set of m linear equations of the form

n
Z ajixi = yj, 1

i=1

IA
—

j < m. (I11.1)
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The set of coefficients aji may be represented by the matrix A, where
the quantity aj. is the number in the jth row and {ith column of A. A con-
venient notation for an element of the matrix A is A.. i the subscripts
signifying the row and column, in that order, in wh1ch the element is located.

We have then for a description of the elements of the matrix A

A, =a,.. (II1.2)

We then wish to express the set of x, and the set of yj in matrix form,

and define rules of combination of matrices so that the very compact equation
AX = Y (ITI.3)

is a valid matrix expression equivalent to the complete set of equations
III.1 for all values of the subscript j. We have a choice between expressing
the sets of X, and Yj as matrices of one row and expressing them as
matrices of one column; the choice is arbitrary. In accordance with con-
vention, we shall describe both the set xJ and the set y as matrices of one
column; X has as many elements as there are columns of A, and Y has as
many elements as there are rows of A. A matrix of one column is usually
referred to as a vector; we shall define the operation of matrix-vector
multiplication as indicated in equation III.3 by

n

Aji Xl = Yj (IT1.4)

=1
which is obviously identical with equation III.1, except that the quantities
concerned are described by their locations in the appropriate matrices
rather than by their magnitudes. The operation is not defined unless the
number of elements of X is the same as the number of columns of A. In
particular, the operation XX is not defined.

The matrix formed from the matrix A by interchanging rows and columns

is called the transpose of A, symbolized by Al In other words,

At-a. (II1.5)
1_] _]1

The transpose of a vector is a matrix of one row (sometimes called a

IOw vector as opposed to a column vector) and the operation Xt X is defined;

in fact
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n
xtx = Z x 2 (II1.6)

from equation II1.4. If X is considered an actual vector in Euclidean n-space
with components of Xj’ the quazltity X'c X is the square of the amplitude of
that vector. The operation XX  is also defined; the result is a square matrix
whose ij component is Xin'
If in addition to the relationship given by equation III.3 we have a re-
lationship
BY = Z, (TII1.7)

then obviously

Z = BAX. (II1.8)
We can also derive a relationship between Z and X directly of the form

Z = CX (I11.9)

so that for consistency it is desirable to define the operation of multiplication

of the matrices B and A in such a manner that
C = BA (II1.10)

where the sign of equality implies that each element of thé matrix formed by
multiplication of the matrices B and A is equal to the corresponding element
of the matrix C.

It is a simple matter to show that the consistent definition of the
operation described in equation III.10 is, for a matrix B with n columns and
a matrix A with n rows,

n

Cjk = Z BjiAik' (ITI.11)

i=1
The number of columns of B must equal the number of rows of A for the
operation to be defined. It can easily be seen that matrix multiplication as
defined by equation III.11 is equivalent to matrix-vector multiplication as
defined by equation III.1, considering the columns of the matrix A as a set of
vectors each of which is transformed in turn into the corre sponding column
of the matrix C by multiplication by the matrix B. Matrix multiplication is
not commutative, that is, AB does not nece ssarily equal BA, but can be shown
to be associative, i.e. (AB)C) = (A)BC).
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Some ‘special forms of matrices are of interest: A square matrix is a

matrix with equal numbers of rows and columns; a diggonal matrix is a

square matrix whose ij elements are all zero unless i = j; an upper triangular
matrix is a square matrix whose ij elements are all zero unless j > i; a lower

triangular matrix is a square matrix whose ij elements are all zero unless

i> j; a zero matrix O is a matrix whose elements are all zero; a unit matrix

I is a diagonal matrix whose nonzero elements are all unity; and a symmetric
matrix is a matrix such that Aij = Aji’ hence A = At.

The determinant of a square matrix is the determinant whose elements

are the elements of that matrix. Its value is, according to the theory of

determinants,
m'
n m
‘Al =) |evt om A (IIL.12)
ik )k

where within each product of m factors j and k each take on each of the values
l to m once and only once, the values of j are taken in order, the sum is
taken over all sets of permutations of k, and the exponent n is the number of’
interchanges of the subscripts k necessary to restore them to normal order.
If the value of the determinant of a square matrix is zero, the matrix is said
to be singular.

It can be shown that a nonsingular square matrix A possesses an inverse
A-1 such that the product of the two, in either order, is equal to a unit matrix
of the same dimensions. In order to evaluate the inverse of a given matrix,
we define the cofactor of an element of the matrix Aij to be the determinant of
the matrix formed by eliminating the row i and column j, multiplied by
(_1)i+j.

the theory of determinants, that

The cofactor of Aij is symbolized by AY. 1t will be recalled, from

m m
|A| - Z A, AY - Z A,. AY. (IT1. 13)
ij i]
i=1 j=1

In the theory of determinants this is usually spoken of as expansion by minors.

From equation III.13 and the definition of matrix multiplication (equation III.11)
it is easy to see that
-1, Ak

J
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or, that the inverse matrix is formed by replacing each element by the value

of its cofactor, dividing each element by the determinant of the entire matrix,

and then (note the reversal of indices) transposing the resulting matrix.
From these basic definitions a number of simple relationships become

apparent, as follows:

= s 1
(aA)iJ. aAlJ (III.15)

where q is a simple scalar quantity;

(A+B),.=A.. +B.., . (111.16)
ij i ij

A+B=B+A, (111.17)

A(BC) = (AB)C = ABC, (1II.18)

A(B + C) = AB + AC, (111.19)

(A+B)+C=A+(B+C)=A+B+C. (1I1.20)

If A is any matrix, AfAisa square symmetric matrix with

t. . .
as many columns as A, and AA is a square symmetric matrix

with as many rows as A. (ITI.21)
Al = 1A = A, (111.22)
A-0=0"A =0, (111.23)
(aB)' = BEAF, (I11.24)
(AB)'1 - lal, (II1.25)

We define the term orthogonal as follows: if two vectors X and Y have

the same number of components, they are orthogonal if
x'y = ¥'x = 0, (II1.26)

Returning to our set of linear equations, as expressed in equation IIL.3,
if there are m equations of m terms each, and the m components of Y are
known while the m components of X are not, we can in principle evaluate the
components of X by multiplying both sides of the equation through from the
left by A—l, if A is not singular, to give

1 1

AT'Y = ATTAX = IX = X. (I11.27)



-31-

We shall use this technique in our data analysis; as will be shown
shortly, the values of the elements of the inverse matrix will be extremely

important to our problem.

3. Statistical Mathematics

We make the assumption that the results of an experiment subject to
random error, if repeated sufficiently often, will ""average out' to the '"true
result of an ideal experiment not subject to random errors. Intuitively we
feel that most of our actual results will be close to the ideal value, fewer of
them somewhat less close, and a very small number quite far away indeed.

This leads us to the concept of a distribution function for an experimental

measurement subject to random errors; such a measurement will be referred
to as a variate. The distribution function for a variate x is a function which
describes the fraction of times, in a large number of measurements of x,

that a measurement of x falls between two specified values. '"Fraction of
times in a large number of measurements'' may be taken as an approximate
definition of probability — the rigorous definition may be taken as the limit of
that fraction as the number of measurements increases without limit. The
utility of the concept stems from the fact that probabilities may often be
calculated from first principles.

Distributions can of course arise from other sources than from errors
in the measurement of some simple precise quantity. If one measures the
weights of a number of supposedly identical objects, some variation will be
observed; part of this variation may be due to random errors in the weighing
process and part to actual differences between the objects themselves. In
this case the ""averaging out" process carried out over a number of measure-
ments refers, not to the '"'true' weight of any actual object, but to a sort of
idealized or typical weight which one would expect such an object to have, a
priori.

It should be emphasized that the concept of ""average' applies to a

distribution; it makes no sense to talk of the ""average'' of a set of quantities

from different distributions unless some correction is applied to reduce these
distributions to the same basis. This concept will be discussed in greater

detail below.
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The probability of a measurement of the variate x falling in a particular
interval is obviously dependent on the size of that interval; as the size of the
interval approaches zero, the probability of a measurement falling in that
interval becomessimply proportional to the size of the interval.

Let us assume a coordinate u measured in units of a particular
dimensionality — area, for example, or time or pure number. We then define
the distribution function Px(u) of the variate x, when x is measured in the
same units as u, to be such that Px(u) du is the probability that a measured
value of x will fall between u and u + du. We will assume that distribution

functions are normalized, that is

gw P_(u) du = 1. (111.28)

This is equivalent to saying that any measurement of x will result in some
finite value.

From the definition, the probability that a measured value of x will
fall between a and b is

b
P(a< x< b)= S P (u) du. (I11.29)
a X
We define the expected value E [f(x)] of any function of x as the limit of

the average value from a large number n of measurements, as n increases
without limit; therefore

E(x) = g uP_(u) du (I11.30)
and
E[f(x)] = S f(WP_(u) du. (I11.31)

If f(x) is taken as the difference between x and E(x), we get

v

E [x - E(x)] = S‘ [u - E(x)]Px(u) du = E(x) - E(x) = 0 (I11.32)

- OO

as might be expected; if, however, we consider the expected value of the

square of that difference, we are integrating a quantity which is sometimes
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positive and never negative so that we expect a nonzero result. This quantity
;s called the variance of x:

o0

var(x) = S [u - E(X)] P_(u) {[x - E(x)] } (I11.33)

Its square root is the standard deviation of x, o

It should be noted that the term ''variance of x'" is somewhat mis-

leading; var(x) is not a function of x, but is a parameter of the distribution

function of x along the coordinate u. It is a measure of the precision with
which x can be measured, or of the "width' of Px(u). Since the dimensions
of var(x) are those of xz, while the dimensions of O'X are thcse of x, the
standard deviation is the quantity which is the easier to interpret in terms of
the precision of x. x is often reported as x= o If the form of the distribu-
tion function is known, * o gives information on the size of the interval
within which x is expected to fall; obviously the size of this interval depends
on the degree of certainty with which we wish to predict the value of x, or
the result of a measurement to be made. It is customary to speak of a con-

fidence limit to a certain level; the 95% confidence limits, for example, de-

fine the range in x within which 95% of a large number of measurements are

expected to fall. (See Fig. III.1.)

The '"'n percent confidence interval' can be defined explicitly by a such

that
g_ P (u) du = 7o (1I1.33a)
: X-a

which obviously depends on the form of Px(u). It is the confidence interval

which determines the significance of a set of results — for example, the

b 13 s N

question may be asked whether the results of two measurements are believed

to be the same with a certain arbitrarily assigned confidence. This is equivalent
to considering the difference between the two measurements to be a new variate
whose distribution function can be derived, and asking the question whether the

value zero lies within the appropriate confidence interval,

| If we have two variates x and y, we define an analogous quantity, the covari-
ance of x and y, by

cov(x,y) = E{[x - E(x)][y - E(y)]}. (IIT 34)

e e e £ S
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f— 95% C.L.__..1

(a) 2 59 2.5°%% OF
. Qo
TOTALS_/ZF?EA TOTAL AREA
a
> 2.5 %OF
< 2.5%O0F TOTAL AREA
TOTAL AREA

a - GQN

E (x)

l‘_UNSYMMETFNCAL 95%C.L., .
PROBABILITY SYMMETRICAL

(c)

2.5% OF
TOTAL AREA

-_'——0 il

E (x) CLL-646-1573

Fig. III.1. Confidence limits: the 95% confidence limit is shown for three
distributions. For a symmetrical distribution (a) a symmetrical interval
about E(x) excludes 5% of the total probability, in two equal parts. This
implies that there is a 95% probability that a single measurement of x will
lie between E(x) + a and E(x) - a, with an equal probability (of 2.5%) that a
measurement will lie outside this range on either side. For an asymmetrical
distribution one has a choice: (b) shows a symmetrical interval about E(x)
such that the probability of a measurement of x falling within this interval is
95%, but a measurement outside this interval is more likely to be too high
than too low; (c) shows an asymmetrically defined interval, so placed that
a measurement falling outside this interval is as likely to be high as it is to
be low.

L e e m—Am———— g o s 1

R



-35-

Naturally,
var(x) = cov(x, x). (IT11.35)

If cov(x,y) = 0, x and y are said to be uncorrelated. Cov(x,vy) is a

measure of the correlation between deviations from the expected values of
x and y, measured simultaneously. If for example one measures both the
length and the temperature of each of a set of metal bars, one might not be
surprised to find that there was a distribution of both length and temperature;
if evaluation of the covariance between length and temperature, however,
gives a result which is markedly different from zero, one might then begin
to suspect a relationship between the temperature of a bar of metal and its
length. One could then get a more realistic idea of the actual distribution
of lengths among the metal rods by measuring them all at some constant
temperature.

Such a ''distribution of lengths'" would of course be compounded of the
actual distribution in the lengths of the bars and the imprecision
of the method of measurement used. If one bar were to be measured a
number of times, a distribution would still be obtained, though with a method
of measurement sufficiently precise in terms of the unit of measurement
such a distribution would be extremely narrow. Information on the precision
of the measurement method, obtained by a series of measurements on a
single object, can then be used to deduce the actual spread of the distribution
in length of a set of bars from the observed total spread. (This deduction will
be discussed further under ''Analysis of Replicate Samples: Analysis of Variance,"
Section 7 of Chapter V.)

A number which is not subject to variation is referred to as a constant.

It can easily be seen that, for a constant a,

E(a) = a, (111.36)
E(ax) = aE(x), (I11.37)
E(a + x) = a + E(x), (II1.38)
var(a) = 0, (I11.39)
cov(a,x) = cov(x,a) = 0, (111.40)

var(ax) = a2 var(x), (I11.41)
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var(a + x) = var x, (111.42)
cov(ax,by) = ab cov(x,y). (IT1.43)

E(x), var(x), and cov(x,y) are constants of the system.
We are now in a position to develop what we will need of the algebra of

expected values, variances, and covariances.

Theorem I: E(x + y) = E(x) + E(y).

E(x+vy)= S‘ qu+y(u) du,

PX+Y(u) = S 3} Py(v)Px(u - v)dv,

E(x+vy)-= S‘_w S:oo uPy(v) Px(u - v) dv du.

Reversing the order of integration, and lettingu=u-v+v,

o0 [} [}
E(X+Y)=S P_(v) g (u-V)P(u-V)du+v§ P (u - v) dujdv.

-0 Y - 00 x -0 x
The inner integrals are being taken over the entire range of u with v

held constant so that du = d{(u - v) for each value of v.

~Exty) = S‘ _ Py(v) S‘ (u - V)Px(u - v)d{u - v)

- - 00

+VS Px(u—v)d(u—v) dv

-0

©0

5\ . Py(v) [E(x) + v:l dv

E(x) S_w Py(v) dv + S_w va(v) dv.

E(x +v) E(x) + E(y). Q.E.D.

s T

TR 7O P T e, R .80
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Theorem II: E(xy) = E(x)E(y) + cov(x, y).

covix,y) = E {[x - By - E )
= E[xy - xE(y) - yE(x) + E(x)E(y)]
= E(xy) - E(y)E(x) - E(x)E(y) + E(x)E(y)
= E(xy) - E(x)E(y).

~ E(xy) = E(x)E{y) + cov(x,y). Q.E.D.

Corollary: E(x2) = E(x) 2 + var(x)

E(xz) = E(x - x) = E(x)E(x) + cov(x, x)
E(xz) = E(x) 2 + var(x). Q.E.D.

* Theorem III: var(x + y) = var(x) + var{y) + 2 cov(x, y).

var(x + y) = E{[x+ y - E(x+ y)]°

= E {lx - E(x) + y - E(y)]%)

=E{lx - E@]% + 2[x - E@)] [y - B()] + [y - E()]

= E {[x - E() ) + E{[y - e + ZE{[x - £ [y - £} -
var(x + y) = var(x) + var(y) + 2cov(x,y). Q.E.D.

Theorem IV: var(x - y) = var(x) + var(y) - 2 cov(x, y).

The proof follows the same method as for Theorem Iil.

The variance of the product or quotient of two variates depends on more
complicated properties of the distribution functions. However, when the
standard deviations of the distributions concerned are small compared to their

expected values, it is possible to approximate the variance of a product as

follows:

Theorem V: var(xy) = E(y)2 var(x) + E(x)‘2 var(y) + 2ZE(x)E(y)cov(x, y).

var(xy) = var {[E(x) +x - EX)][EyY) ty- E<y)]>

x - E(x) Ly - EW

E(x)°E(y)® var { P+ X2 B Ly S EG) L [x - By - E(Y)]}

E(x) E(y) E(x)E(y)

or by equation II[.42
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- E E [x - E(x)][y - E(y)]
var(xy) = E(x)°E(y)® var {x E(x§X) * 5 (Y()Y) ¥ E(x)E(y) }

Since the distribution is assumed to be narrow, we may neglect the last

term to give

- E(x E
var(xy) = E(x) E(y)’ Var[x E(x)( L+ LE(Y()Y)jl

.~,E(x)2 E(Y)2 var[EXX) + E%Y):l .

Using Theorem III and equation II1.43,

var(x) +

var(y) + -ET-)%E(_) COV(X:Y)J
E(x)2 E(y)* xIEY

var(xy) ~ E(X)Z E(Y)Z [

~ E(y)2 var(x) + E(x)z var(y) + 2E(x)E(y) cov(x, y). Q. E.D.
In the case where the two are independent, then we have

Theorem Va: If the two variates are independentin the statistical sense,

then there is an exactrelationship:

var(xy) = ]Z_I(_y)2 var(x) + m)2 var(y) + var(x) - var(y)

2 =TT 2
var(xy) = E(xzy ) - E(xy)
Since x and y are independent, x2 and y2 are independent and consequently
) 2 2 2
E(x%y?) = E(x?) - E(y%)
E(xy) E(x) - E(y)

E(x%) - E(y%) - EM)2E(y)2

"

. var(xy)

(B2 + var(x) [ [E(y)2 + var(y)] - B2 - B(y)>

E-]—(_37)2 var(x) + E—Z—(—;)z var(y) + var(x) - var(y).

2
) x E(x)| |var(x) , var(y) = 2 cov(x,y)
Theorem VI: var(y) z[E(YJ [E(X)Z + E(Y)Z Ex)E(y) J .

x E(x) + x - E{x)
var(;,-) = var [E Ty o (V)J
x - E(x)
E(x)

1+ X—L'(E)( )

= var

e —— - e B

e s
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2
_[Ex x - E(x) [ ¥ E(z)]
s [E(y)] Var{{l T TEm } E(y)
y - E(y)
E(y)

since we have assumed that is small. The proof then follows as for

Theorem V.
Finally, let us consider a to be a vector with constant components a; and
x to be a vector with the same number of variate components xi; then atx is a
linear combination of the components of x. We can define a covariance matrix
of x, KX, such that
(Kx)ij = cov(xi, XJ.). (II1.44)

Theorem VII: Var(alx) = atha (in matrix notation).

we(2 ) E{z (3 )]

{; : aE<x>]2}

. ={[3 b))
= {33 ] -mm-mjﬂ}

1]

Zz a; a cov(x xJ)
ij

Z { Z [cov(xi, xj)a;, } = atKXa in matrix notation.
: ;

Q. E.D.
Theorem VII gives us the means of calculating the variance of any linear

combination of variates with constant coefficients if the covariances of all pairs
of components are known.

4. Averaging and Sampling Statistics

Let us consider first a large number m of independent quantities X; which
constitute a distribution. There is no basis for selection among these quantities
other than their relation to each other and to the distribution defined by the mea-

Surements themselves. The expected value of x from this distribution is given by




—_—ﬁ |
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m

5 -

E(x) = =1 (I11.45)
m

which is a simple arithmetic average, since the "probability of x having the

value xi” is constant for each observed value X, We shall symbolize E(x) by
X for convenience. Also
m
2
2 (x. - X)
i
var (x) = 121 - 5.2, (II1.46)

Now let us select a subgroup or sample of nj of the measurements chosen
at random, so that nj <m. The average of these nj measurements will be, for
the jth sample,

Ely n.

J
X,

i

4 |
¥ = l = _l
Xj By Z <n. Xi) (I11.47)
J i J
(where the summation is taken over the n, selected values, not necessarily the

first nj). By Theorem III, recalling that the measurements are all independent,*

™
var(§j) = Z var<n—1— Xi)’ (II1.48)
n J
and by IIL41,
nJ nJ
var(x,) = ——2—1 var(x) = d_ o 2 (II1.49)
J n n 4 x’ )
i J i
— 1 2
ar(x.) = —- .0 , II1.50
var(x)) n.z(an) (IL.50)
)
var(x.,) = & ¢ 2, (I11.51)
j nj X

or, in other words, the variance of the average of a sample of nj measure-
ments is l/nj the variance of an individual measurement. This result can be
used to describe the precision with which the true mean of the total distribu-
tion may be estimated from the mean of a random sample drawn from the

distribution, provided the variance of the distribution of the sample can be

obtained.

*This is strictly true only for an infinitely large population, or if each measure-
ment is replaced in the population after selection so that it may be selected again.
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This variance may be estimated from the distribution of the quantities

within the sample, as follows: for a given quantity X; in the jth sample

(e - X) = (x; - X)) 4 ; - X), . (II1.52)

2 -2 2 —
(xi -X)" = (xi - xj) + ch -X)" + 2(xi - Xj)(;j - X). (II1. 53)

Summing over the total sample,

nj n:

nj J
Z(x-X)Z=Z(x-2)2+n(§-X)Z+z(§-X) Z(x-i‘) (III.54)
_ i A T i j . I M '
1 1 1
but
i
Z (x, - ;J.) = 0. (II1.55)
i
Therefore
nj nj
. 2 — .2 - 2 .
Z (xi -X) = Z (xi - xj) + nj(xj - X)7, (III.56)
1 1
n; nj
E z x, -x)% | = Z(x )% |+ nE® - x)° (I11.57)
. - = .- X, n, .- .
T A N VRN ’
1 1
but
B 0
2
E z (x, - X)° | = z E| (x, - X)° | = njtrxz (I11.58)
i i
and
2 1 2
E[& - X) ] = var(x,) = T o (I11.59)



-42-

so that, inserting III.58 and III.59 in III.57, and rearranging,

nj
E Z (x. - 2.)2 =ng - n.(—l-—(rz) = (n, - 1)¢ 2. (IL1. 60)
i j j x j\n., "x j X
- j
Now if we let
n
_ 2
Z (x, - %)
2 g
s’ = =5 , (II1.61)
j
then
2, 2
E(s]) = o] (I1. 62)

and sj2 is an unbiased estimate of crxz. Note that when the variance of a total
dis¢ribution is estimated from a sample of nJ. quantities, the denominator is
nj - 1; when the variance of the distribution formed by the sample itself is

required, the denominator is nj.

To recapitulate:

Z (x, - %)
1
n

var(x) = — (ITI.63)
J
is an estimated measure of the precision of an individual measurement;
7
-2
var(x) L ) (I1I.64)

nj(nj -

is an estimated measure of the precision of the average of nJ. measurements.
One can obtain the same result in another manner. Let us as sume that
we have a set of n independent observations X, belonging to a population with

. 2
variance o .

Let
u,. =X, - X, (II1.65)

then
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var(uij) = var(xi) + va.r(xj) -2 cov(xi, xj) = E(uizj) - E(uij) 2, (II1.66)
var(xi) = var(xj) = 0'2, (I11.67)
(., %) = 6..0° (ILL. 68)
cov Xi’xj = ijo- . .
Now
E(uij) = E(Xi) - E(Xj) =0 (I11.69)
and therefore
var(u,.) = Z(] - 6..)0’2 = E<u2> = E(x.Z + x.2 - 2x.x.) (I1I.70)
1) 1) 1) 1 J 1)

so that an estimate of 0'2 can be made from

2 2

x. + x
. ) 2
L J xx = (1 - 5..)¢ . (II1.71)
2 i”j ij 4

This estimate can be improved as far as possible from the available

data by measuring over all possible pairs.

n n 2 2 n n 2 n n
. Xi + xj < > 5
ZZ 2 - Xixj = n Z x- Z x5 =0 ZZ (1 - 6ij)’ (I11.72)
j i i i

1]

n
n Z xi2 - (z Xi> = (n'2 - n)crz, (I1L1.73)
i

n -1 n -1

2

Q
aQ
R

(I11.74)

is the best estimate of o4 available from the data.
The value of this approach lies in the development of the concept of
"degrees of freedom' of the system. It can be seen that the term -1 in the

denominator arises from the restriction that the members of all possible
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pairs are not independent, i.e., that cov(xi,xj) is not always zero. It can
be shown that in statistical estimation, the denominator in an expression like
III.75 is given by the number of pieces of information (here n) minus the
number of relationships between them. In this case we have one relationship;
we are taking an average, so that x is expressed in terms of the X, Later
we shall see that the resolution of n-component systems, when m data points
are available, will involve m - n degrees of freedom.

Let us now consider a series of independent measurements of the same
quantity, each with its own variance, as sometimes happens. We wish to
make a best estimate of the true value of that quantity by averaging the re-
sults, but we feel intuitively that the more precise results should be glven
greater weight in the averaging process; we have also stated that averaging
is properly a process which applies only within a given distribution, which is
equivalent to saying that the components of the average should all have the
same variance. This is not true in the case we are considering; however,
since all the measurements purport to be measurements of the same quantity,
it should be possible to put them all on the same basis.

We have already seen that measurements which are mean values of sets,
or samples, of measurements have variances which are reduced from the
variances of individual measurements. Let us consider that a series of k
sample sets have been drawn from a parent universe with a variance 0'2; and
let the number of measurements in each set vary from sample to sample. The
means of such a series would then represent a series of data such as we are
discussing.

In this case, for the _ith set, from III.51

var(x,) = % 2. (I11.75)
j n.
J
Consequently,
0'2
n, = ————— (III.76)
J var(xj)

and in order to combine all the observations into one grand average, we take




_ nox. var(x.)
= = N .
X m (I11.77)
Yooy
n —
J var(x.)
and
— _ 1 2 _ 1
va.r(X) = —E———— g = ﬁ' . (III78)
2 ) o
n, ——
\ J var(xj)

We therefore see that the proper 'weighting factors' for averaging
measurements of unlike variances derived from sampling differences are
the reciprocals of the variances; it seems apparent that any set of measure-
ments of unlike variances could be duplicated from the same universe by a
set with unlike variances arising from sampling, so that the conclusion should
be generally applicable.

It can easily be shown that a ''weighted average' calculated using the
reciprocals of the individual variances for weighting factors is the average
having the least variance. If the individual quantities which are to be averaged
are not uncorrelated,some complications are encountered, as follows:

Let the set of quantities to be averaged be Xj’ and the weighting factor

associated with each Xj be W..

Then
EW.X.
. J )
X = J

5w
- J
J

In order to preserve complete independence among the WJ. we shall not

(II1.79)

assume that they are normalized. We then have, from II1.40,

var(X) = —-}—2 var (Z wJ.xJ.) (I11.80)

(=)
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which from Theorem VII gives us

= 1
var(X) = > ZZ Wij cov(Xk, Xj)' (II1.81)
<Z W.> ko)
4 J
J
We require the set of Wj to be chosen to give the best value of X, which

we define to be the value with the least variance. Consequently the derivative of
var (X) with respect to ‘each of the W, ,separately, must equal zero. Letting an

J
arbitrary member of the set be W! we have

] =\ | - o~ 1 2
-5-“7 [var(X)] =0 = 7 z Wj) ZZ Wj cov(Xj,Xl)
J

g
J
i z<Z wj>. EZ WiWy cov(X X)) [ (mwsz)
J

j

This gives

zz Wj chov (Xj ,Xk)

k

W.coviX., X )= J

25 J ( J 1) ZS

j Ww.

J . ;
J

The right-hand member of this equation does not depend on £, the index

(II1.83)

of the arbitrarily chosen Wj’ and hence may be represented by a constant C
whose value is to be determined. We can put equation III.83 in matrix-

vector form to give

wa = Ci (II1.84)

where C is as described above, W is the vector whose components are w.,
i is a vector (of the same dimension as W) whose components are all unity,
and Kx is the covariance matrix (see Theorem VII) of the Xj' We then have,
directly,

L.

W = CK_ (II1.85)
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It is obvious from III.79 that multiplication of the set Wj by any
arbitrary constant will not change the value of i, so that C may have any
value; it may if desired be chosen to make the W, normalized.

The variance of X can be obtained by substituting this value of W into

I11.81, which gives in matrix notation <rea1izing that Z Wj = itW>

J
_ o wkw Cit(K;l)t ‘K, CK_' i
var(X) = = - (I11.86)
c2(itw)? c?(i'x; 1)
Canceling like terms, and letting KxKx-l equal unity, we have
var(X) = : (I11.87)
but since KX is symmetrical, K;] must be symmetrical, and hence
var(X) = —+ . (I11.88)
do -1
1K 1
X
In matrix notation,
b -1
_ t i'K X
X=ViX= tX_l . (I11.89)
iw i KX i

In the simple case where the X. are in fact uncorrelated, Kx is a
diagonal matrix whose diagonal elements are the variances of the Xj; the
diagonal elements of the inverse of Kx are therefore the reciprocals of the
variances of the Xj' Inserting these values into III.88 and II1.89, we arrive

at III.77 and III.78.

5. The Least-Squares Solution

If we are given a set of data, knowing that the measurements of the set
are subject to random error, and if we are given an equation of known mathe-
matical form containing a number of unknown parameters whose values are
to be determined by fitting the equation to the data, what is the procedure

which will give the ''best'" estimates of the parameters from the admittedly
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imperfect data? We obviously wish to minimize the average deviation between
the observed points and the calculated points in some manner. The average
of the algebraic values of the deviations will not do, since a large negative
deviation would counterbalance a large positive one; we might consider mini-
mizing the average of the absolute values of the deviations. A better approach
is to minimize the average of the squares of the deviations of the obsérved
from the calculated points. We shall show that this approach leads to expected
values of the parameters which are the true values. In practice it is enough
to minimize the sum of the squares of the deviations, properly weighted.

We must first consider the question of the relative worth of the ex-
perimental points. If we have no information about the estimated precision
of each point, we have no choice but to treat them all alike: furthermore, if
we have reason to believe that the points are all equally precise, we have
every reason to treat them alike. However, if we have an estimate of the
precision of each point, and the estimates are not all equal, we shall see that
the points should be weighted.

We will see that the appropriate weighting factors in this case are

inversely proportional to the variances of the points. Let us assume that we

have a set of m measurements Yj of known variance; and also that each point

is to be fitted by an expression which is a linear combination of n known
functions or quantities a.ij with unknown coefficients x, which are constant

over the total set of measurements. We know that if the equations are consistent
(as they must be to represent a real case) and if m > n, solutions for the X, are

possible; let us assume m >n. We then have a set of m equations
n‘ .
Yj = z aijxi' (II1.90)
i=1

In general any well-selected set of parameters x; will yield a calculated set
of values of Yj which differ from the observed values by a set of small

quantities,

n
EJ = z aijxi - yj. (I11.91)
i=1
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We wish to minimize S, the weighted sum of the squares of the Ej’ with
respect to each parameter X - Let us for the moment- assume that the
appropriate weighting factor is proportional to the reciprocal of var(yj).

Then

g = 1= , (I11.92a)
var(y.)
=1 !
n
m 2akj<>: 2355 YJ>

0S i=1

= = 0, III.92b
axk Z var(y.) 0 (III.92b)

j=1 ’

n
m, Z (akjaij XI)' k37

i=1

= .92
/) 2y 0, (III.92c)
j=1 !
or, reversing the order of summation,
& 2 aa = a y
kj ij - Kj’j

21D 2L} - ) (w924
i=1lj=1 j=1

for each value of k from 1 to n. These equations are referred to as the

normal equations of the system. Their solutions are the values for the x,
which minimize the quantity S.

It can be seen that if the equations of the original set III. 90 are weighted
by the reciprocal of the square root of the variance of y.» the normal equations
can be put in matrix notation very simply. Let the matrJix A, the vector X,

and the vector Y be defined by

a..
— 1

Aij—w,

(II1.93a)
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X

n
»

L= x (I11.93b)
7

Y. (I1I.93c)
J [Va.r(yj)]l /2 .

Then the equation III.90 can be written
AX =Y. (I11.94)

Note that A is not a square matrix since m >n. If we multiply both sides of

the equation from the left by the transpose of the matrix A, we get

Atax = aty, (I11.95)

which by the rules of matrix algebra can be shown to be precisely equivalent
to equation III.92d, including the proper weighting factor. The solution in

matrix notation is then
X = (AtA)'l - aty. (II1.96)

For the remaining discussion we shall assume that the equations are
properly weighted at the start.

Kenney and Keeping2 present the following demonstration that if the
equations are so weighted the expected values of the X, calculated from the
normal equations III.95 are the true values of the system.

Let us suppose that the Yj of equatign III.90 are distributed about their
true values n; with a common variance ¢~ (which will be true if the equations
are properly weighted) and that they are independent. Let us write the normal

equations III.95 in the form
BX =g (I11.97)

where the matrix B is equal to Afa and the vector g is equal to AtY. Then

X = B 1g, (III.98a)

x; = z (13'1)J.k g (I11.98b)
i

“Efx) = z (B‘l)jkE(gk). (I11. 98 ¢)
K

3. F. Kenney and E. S. Keeping, The Mathematics of Statistics, Part Two
(D. Van Nostrand Co., Inc. » Princeton, 1951), 2nd Ed., P. 309 ff.
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We obtain the expected value of g1 from the expected values of the yj,

E(g) = z a,; Ely), (III.984)
i
and the expected values of the Y from the true values gl of the X,

Ely) = 2 a,€,- (I11.98e)
4
Substituting back into equation III.98c,

Bl = Z Z Z (B_1>J'k'aki’éz Sy (111.98)
i f

k

Rearranging the order of summation,

E(x;) = Z {gl Z[(B*)_ z akiaﬁ]}, (I11.98g)

1 Kk <y
but
z ai2pi T Bkl ) (1II.98h)
i
- -1 . .
E(xJ) = Z [E*‘I z <B >jk BkEJ' (ITI.98i)
J4 k

Now by the definition of an inverse matrix and the laws of matrix multiplica-

tion,

-1 _ _ ]_,j:I’ .
2 (B >jk Big = 0 = {o,j%z. (II1.98 j)
K

“ B(x)) = Z £ 65 = &5+ Q.E.D. (II1.98k)

That is to say, the expected values of the xj resulting from solution of

the properly weighted normal equations are the true values for the system.



We also wish information concerning the variances of the x. so ob-
tained, and of the variance of any calculated y using a suitable set of a;
For both these problems we need the covariance matrix K of the vector X
(see the definition, equation III A41).

We shall show, following Scheffe’,3 that the inverse of the matrix of the

normal equation, multiplied by the common variance of the y, is the covariance

matrix of x.

Let us define a vector V whose components are jointly distributed
random variates all having finite variance. Let us further define the ex-
pected value of a matrix or vector to be the matrix or vector formed from the

expected values of its components. Then we can write

K= E{[V -EW)] [V - E(V)]t}. (II1.99)

Now if we have a vector W with variate components, and a matrix A

with constant components, and if

W = AV, (II1. 100)
then
. Ky = E{[W - E(W)] [W - E(W)]t} , (III. 10 1)
? K, =E {A[V -“E(V)] [V - E(V)]tAt}, (I11.10 1b)
Ky = AE{[V -EW)] [V - E(V)]t} At (IT1. 10 1c)
or
Ky = AK_a'. (I11.102)

The normal equations are written,

Afax = aly, (I11.95)

and we assume that the covariance matrix of Y is

KY =0 I (II1.103)

since the Yj are all independent and have a common variance 0-2.

3H Scheffé, The Analysis of Variance (John Wiley & Sons, Inc. , New
York 1959), pp. 8-12.
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x = (afa) taty (I1I.104a)

and from III.102

K= (afa) tat. Ky°[(AtA)-lAt:]t. (II1. 104b)
SK = 2ataytoat.1.a l:(AtA)_l]t. (I11.104c)
But since AtA is symmetrical, (AtA)_1 is symmetrical and
[(AtA)- 1}t= (afay L, (IT1. 104d)
AK = Zafay . ata - ata) L. (III. 104e)
2, t -1 :
2K _=o"(a'A)7" Q. E.D (II1. 104f)

We now need an unbiased estimate of 0'2. We define the residual p. by

=y, - Y. II1.105
Py = Y7 % ( )

where Yj is the (weighted) observed value of y and Yj is the (weighted) value
computed from the least-squares solution values of the parameters x. We

° shall show that, if we have n-parameters and m points,

m
2
E ;
2 <z pJ)
o= =L (I11.106)

m - 1n

following the treatment of Kenney and Keeping.4 We define the error Aj by

A.=y. -mn. III1.107
VRS R ( )
where n; is the true value of yj.

We have

, .
E(yj> S E[(nj + AJ.)Z] = njz + gl (II1.108)

since E(Aj) is zero. If the true values of the x, are gi’ as before,

ng = Z FEW (II1.109)
i

——

4
Op. cit., pp. 311-312.




the normal equations as

BX = Afax = Al = G,
n
G = z B Xy
k=1
n rl n
X6, = 2 B X Xy
=1 i=1 k=1
n n n
) =) ) BuEGxg - )
i=] k=1 i=]

1

B l:g €t cov(X X )]

(III.

(I1I.

(III.

(I11.

(I1I.

(III.

(III.

(I1I.

(III.

(III.

110)

111)

112)

113)

114)

115)

116)

117)

118)

119)
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n n n
2
Z z gingik = E z XiGi> - no . ’ (I11.120)
i=1 k=1 i=1
Now substituting in III.85 and rearranging,
m m
2 2
E Z yj - E<z XjGj> = (m - n)o . (I11.121)
=1 j=1
We have also
p=y-Y=y-AX, (II1.122)
t .t t t _
Ap=Ay-AAX =G - A'AX =0. (III.123)
m
2 t t t t t
2pj=pp=(y—Y)p=yp—Yp, (II1.124)
=1
Yo = xfatp =x%0=0 (IT1. 12 5)
m
2 t t t t
'.ij=yp=y(y—AX)=yy—GX. (111.126)
j=1
m m m
z 2=z Z—ZXG (II1. 127)
C LT 75 3T '
=1 =1 =1
m m . m
2 2
E .| = E . - E Z X.G.}- IIT. 128
Z pJ> Z YJ > < J J) ( )
j=1 =1 j=1
Substituting in equation III.]128, and rearranging terms,
2
e
2 < j E >
J
o pr———— (I11.129)
so that
Z 2
2 j pj
=
S a— (I11.130)
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is an unbiased estimate of 02. It should be borne in mind that 52 is an estimate
which corrects for variances which were not included in the weighting; conse-
quently a result for 82 of less than unity means either that, fortuitously, the
data fit the calculated curve better than one may reasonably expect; or, alter-
natively, that the original error estimates were too large. In the first case
one should not insert the calculated value of 82 into equation III.104f, but should
merely assume 02 to be unity; if however there is any reason to believe that the
original error estimates were made by a non-objective method, the result ob-
tained is essentially meaningless. One object of this monograph is to provide
experimenters with a set of rules for making the best estimate of the errors
actually involved in their measurements; if a subjective, conservative' guess'
is used, not only is the resulting final estimate of the precision of the experiment
meaningless, but useful information is sometimes lost. The common procedure
of guessing the precision of experimental data is indefensible.

If one now wishes to know the precision of each of the parameters X,
in our least-squares solution, it can readily be obtained from the inverse

matrix of the normal equations, since

X, %t jsz [(AtA)_l]ii . (III.131)

A derivation exists (due to H. Henrisand H. B. Levy of this laboratory) to
show that the choice of weighting factors described by Egs. II1.93a, b and c is in
fact that choice which results in minimum values for the components of the
matrix KX, and hence in the most precise estimate of the components of the
vector X. The derivation follows:

We have the relationship

AgXg = Y

where A, Xs and Y, represent matrices of "true" values. Suppose we have m

observed components of Y and there are n unknown components of X, with m > n,

(II1.132)

and that the components of Y are subject to error.

We wish to estimate 6, which is a linear function of the xi's

6 = c'x (II1.133)
where cl is a given row vector. We wish to ask:
How can we estimate x so that our resulting estimate of 6 will have

minimum variance ?
var 6 = cthc (see Theorem VII, page (39)) (I1I.134)

where K is the covariance matrix for the estimate of x.
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Let A and Y represent matrices of observed values
Ais{(mXn) Yis{m X1)

A

A0 +dA E(dA) =0 (II1.135)

Y, +dY E(dy) =0

Let us define our estimate of X as

Y

X =PY where PA =1 definesP (II1.1386)
We need
K= E{(X-XO)(X—XO)t} (I11.137)
AgX, 7 Y, (II1.138)
[A-(dA)X, =Y - (dY) (I11.139)
AXg =Y - [(dY) - (dA)X] (II1.140)
since
PA =1 (II1.141)
Xy = PY - P[(dY) - (dA)X,] (I11.142)
X - X, = P(dY) - (dA)X;)] (III.143)
K. = E{(X - Xy) (X—XO)1> - E{P[(dY) - (dA)X][(dY) - (dA)X]tPt} (II1.144)
K = PE {[(dY) - (dA)X][(dY) - (dA)XO]t} pt, (IT1.145)
Let
V= E ([(dY) - (dAYX,11(dY) - (dA)XOJt} (I11.146)
Vis anm X m symmetric, positive -~semidefinite matrix, that is atVa >0
_ t
K, = PVP (I11.147)
Since ‘
P A = 1 (II1.148)

mXn nXn
P must be a n X m matrix that can be written in the form (TA)—IT where T is
an n X m matrix such that the product TA is a non-singular matrix.
Therefore T must be of rank n{A must also be of rank n). We can choose

T so that var 6 is a minimum.
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Let tij represent the elements of the T matrix. Then for varg to be a

minimum
8var0) - fopan 1,
at.. ij
1)
Since ¢
var 8 = cK_c
P
then
oK
8var0) win -0 onlyif s = 0,
ij 1j
since KX is square, symmetric, and positive - semidefinite. Since
= t
Kx PVP
oK t
X _ 0P .t orP"
3t ot 'E T PVsi— =0
1] 1) 13
Since V is symmetric, positive-semidefinite, both
op opt
a—t—- VP and PV 5—‘6—— must equal 0.
1] 1]
Consider |
- oP t_
5t Vb~ 0
1)
P = (TA) !
oP -1] o oT
3 = (TA) [-——at? - o A(TA) ]
1] 1] J
oP _ 9 oT -1 t ittt -1
T ” VP = (TA) [—871? - -a"t—i—j—A(TA) T] VT (AT =

Therefore
S [VTt - A(TA) ! TVT{} = 0.

In order for the above to be = 0 for all t, ij it is necessary that
vT? - A(TA) TVT = 0. Therefore,

AT Ttvrh = (vrh.

(II1. 149)

(IIL. 150)

(IT11.151)

(I11.152)

(II1.153)

(III.154)

(II1.155)

(II1.1586)

(II1.157)

(II1.158)

(I11.159)

(I11.160)




Let

M = A(TA) ' T  anm X m matrix of rank n. (II1.161)

B=vVT' an m X n matrix. (I11.162)

Consider the matrix M:
M is an idempotent matrix of order m and rank n. It will have n
characteristic roots A =1 and m - n characteristic roots A = 0. Therefore,

there will be no more than n independent vectors z for which

Mz = z. (I11.163)
We know
MB = B (I11.164)

so that the n column vectors of B must constitute such a set of n independent
eigenvectors associated with M ( ) = 1).
But also
MA = A. (II1.165)
Therefore the column vectors of A must also constitute such a set. Since there
can only be n independent eigenvectors associated with A = 1, the column

vectors of B must be linear combinations of the column vectors of A and

= AQ where Q is an elementary matrix. (I11.166)
= VT = AQ
Tt = v laQ (II.167)
T - otaty-l
P =(TA) T (II1.168)
P = (Qlatvla)ylglaty! (I11.169)
P =atvia)ylghlqtatv? (II1.170)
p=(alviaytalyl | (II1.171)

This is identical to a weighted least squares method with the weighting matrix
proportional to V—l.

Note that the choice of Q has no effect on P so that the estimate of x and

its variance is not dependent on Q.



The quantity xz may be defined in terms of the unweighted residuals

r. b
Jy

m r2
2 _ ' II1.172
2 = Z V_lmryj . ( )
j=1

If our weighting factors for the least-squares solution are chosen to corres-
pond with the true values of the variances of the yj, then obviously the value

of 02 is one, and from II1.130 we get

Ex?) = m - n. (II1.173)
It can be shown that

Var(xz) = 2(m - n), ‘ (II1.174)
and tables exist5’6 showing the probability of occurrence through pure random

error of any deviation xz - E(x 2), measured in terms of [var(xZ)]l/z. The

calculated value of X2 may then be used as a test of the goodness of fit of the

assumed equations to the data. If the calculated value of x2 exceeds the ex-
pected value by an amount too great to attribute to random error, one suspects
at least one of three difficulties: first, an error in the calculation; second, an
Improper estimate of the variances of the yj; or third, an improper form for
the function being fitted to the data. If the first source of trouble is eliminated
through careful checking, a choice can frequently be made between the other two
on the following basis: if the known functions a, of the equation which is being
fitted to the data are themselves smoothly varying functions of a precisely known
parameter such as the time of the observation, then the residuals should be tab-
ulated in the same order as the corresponding values of that parameter. If any
systematic trend then exists in the residuals, the form of the equation is probably
incorrect; if the residuals are scattered at random, the estimates of variance
used for the weighting factors are too small.

In many cases, and specifically in the analysis of radioactive decay data,
the number of terms in the equation is sometimes uncertain. It is desirable to
determine whether the presence of a particular term or set of terms causes a

significant improvement in the fit of the equation to the data. A test for this

5R. A. Fisher and F. Yates, Statistical Tables (Hafner, New York, 1948).

6E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians

(University Press, Cambridge, 1957).
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exists if the measurements are independent. If we let

m r2
Vv = }: V_L‘Yar(yj (III. 175)
j=1

and we let VNl be the value of V when an equation of N1 terms is fitted to m

data points, and VNZ be the value of V when an equation of N2 terms is fitted,

and N, > N

17 N

\Y Vv

- -N
N2 'N1 . B 1
- . (II1. 176)
VN1 N, - N,

A value of F significantly greater than one is statistical evidence that the

N1 - N2 additional terms were more than fortuitously helpful. Tables giving

F::

the significance of values of F in terms of probability of occurrence due to pure
chance are given in many collections.s’6 If the exact form of the additional
terms is not known, unfortunately, this approach cannot be used.

Von Hold’c7 has published a computational method for use with digital
calculators having a limited number of significant figures. Such calculators
may lose information during the course of the calculation, since the differ-
ences involved in computing determinants, or inverse matrices, are some-
times quite small compared to the numbers involved; if the difference
between two numbers n, and n, on a decimal calculator is less than lO-pnl,

2
where p is the number of figures the calculator will hold, it will be ''rounded"

to zero and all information will be lost. The number of significan’lc\rfligures
retained in the calculation n, -n, is of the order of p - log]0 N—]——_—NZ— .

Von Holdt has shown that his computational method, although somewhat more
laborious than more orthodox techniques, gives only half the figure loss; if

one uses an eight-digit calculator, and the data are such that the ordinary
method of solution gives a complete loss of information due to rounding errors,
von Holdt's method will give results in which the rounding error is only one
part in ten thousand. The inverse matrix of the normal equation is also
obtained with less rounding error than that encountered when using more

usual inversion techniques.

The technique is as follows: we write the weighted equations for the

data in matrix form as

AX =Y (IT1.177)

7R. E. von Holdt, Proc. Western Computer Conf. (1955), p. 162.
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where
A= — i o (II1.178)
1 Ear(yj):l /
X. = x., (I11.179)
1 1
Y.
Y. = J ) (111.180)

) Efar(yj)J ke

We then transform the matrix A as follows: to each column after the

first add a suitable multiple k,. of the first column so that the transformed

li
columns are each orthogonal to the first column. This multiple is determined

from the_orthogonality requirement, i.e.,

m
= II1.181
z aj](aji+ ajlkli) 0, ( )
j=1
consequently
K, o=odl (IT1.182)
1i m
aZ
» jl
j=1

The matrix is transformed again in a similar fashion by adding multiples kZi
of the modified second column so that each column subsequent to the new
second column is orthogonal to it; it is easy to show that orthogonality to the
first column is not destroyed by this procedure. This transformation is
continued until each column in turn has been used as a base, and all the
columns of the matrix are mutually orthogonal.

It can be seen from the rules of matrix multiplication that the orthogonal -
ization process is equivalent to multiplying the matrix A from the right by an
upper triangular matrix U with unit diagonal elements to give a new matrix H

so that
H=AU. ~u'=ytal (I11.183)

The matrix U can be very simply obtained by treating a unit matrix of n
columns by the same transformations as A, using the same multiplying
factors kji'

Now writing the normal equation in the usual way, and remembering

that UU "L = 1,
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alax = aty, (I11.184 a)
vtatavulx = vtatly, (III.184b)
atru lx - utaty. (IT1.184 c)

Since the columns of H are all mutually orthogonal,

H'H =D (II1.184 d)

where D is a diagonal matrix.
~x =up lutaly (11184 e)

which is our required solution. The reduction in rounding error arises from the fact
that inverting a diagonal matrix involves nothing more than replacing each diagonal
element by its reciprocal; there are no subtractions.

Furthermore, since

x = (atay laty, (I11.184f)

we can see from II1.184f and III.184e that

atayl =yplyt (II1.184g)

Von Hold‘c7 also shows that if the matrix A is augmented, or expanded, by includ-
ing an extra column equal to the vector Y, and this vector also is made orthogonal to

each column in turn, it is transformed into a vector R such that

r.

Ry = - W (III.184h)

or in other words, the components of R are the weighted residuals of the system, ob-
tained even before the parameters are available to compute the points. It is then a simple
matter to compute

2 =RrR. (I11.1841)

His argument is geometrical: the matrix form of the original equation can be
taken to be an attempt to express a vector Y by the linear combination of a set of vectors
which are the columns of the matrix A. This set of fectors defines a subspace S of m-
dimensional Euclidean space spanned by these vectors. Since the computed Y is a
linear combination of these vectors it must lie in S; the vector R computed by orthogonal-
izing the vector of the observed Y is orthogonal to the m orthogonal vectors defining S

and is therefore the component of Y (observed) orthogonal to S. Consequently,
R = Y (observed) - Y (computed) (I11.185)

by vector subtraction in a space of m + 1 dimensions,
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IV. STATISTICS OF COUNTING DATA

1. Nature of the Problems

In order to apply proper statistical calculations to counting data it is
necessary to have information on the variances of such data. A number of
authors have described the simpler statistical problems associated with the
counting of radioactive samples, in general following the treatment of
Rainwater and Wu.8 These authors discussed in considerable detail the
following problems: a) If the expected value for a count is u, what is the
probability Pn(u) that exactly n counts will be observed? b) If exactly n
counts are observed, what is the probability that the ''true,' or expected,
value lies between u and u + du?

Our treatment of the above problems will in general follow that of
Rainwater and Wu. We shall, however, endeavor to extend and refine their
treatment somewhat by eliminating some approximations. We shall also
consider briefly the statistical problems posed by the existence of counter
background; and also the problem of the precision of the result of a measure-

ment of a parameter of a nuclear reaction by counting a radioactive product.

2. Distribution Functions of Counting Results

Let us assume that in a sample of radioactive material there are N atoms
present at the start of the counting period, and that each of them has the same
probability p of disintegrating and producing a count during the counting
interval. Probability p is the product of the probabilities: 1) that a given
atom will disintegrate during the counting period; and 2) that an atom which
disintegrates in the sample will produce a count in the detector. If there is
only one species present, it is apparent from the integrated form of the
fundamental law of radicactive decay (II.2) that if the number of the atoms in
the sample at the start of the measurement is N, and the duration of the

measurement is t, the expected number of atoms still present, i.e.
At

, the
number which have not decayed, is Ne ; therefore the fraction of atoms
expected to decay during the measurement is (1 - e_)‘t). This is the same as
the probability that one atom will decay during the time t. The probability
that an atom which disintegrates in the sample will produce a count in the

detector is the counting efficiency of the counter, which of course depends on

8 .
L. J. Rainwater and C. S. Wu, Nucleonics, October 1947, p.- 60.
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he decay scheme of the species in question, the geometry of the counting
arrangement, and the radiation scattering and absorbing properties of the
nvironment. Either or both of these two factors may be very small so that
usually p is much less than 1. We now wish to calculate the probability Pn
" that precisely n counts will be recorded during the counting interval.

: The probability that n consecutive atoms will produce counts is pn, the
probability that the remaining N - n atoms will not produce counts is

(1 - p)N-n; and the probability of recording exactly n events is the sum of the
products of these two probabilities for all possible groups of n atoms chosen

from the sample N. The number of ways of choosing n atoms from a sample
of N atoms is

_ N!
Cn(m) = & N -’ (IV.1)

and therefore

]
P = pn(]. _ p)N—n N!

n N R (IV.2)

This is known as the Bernoulli distribution.

Consider the binomial expansion

[p+(1-p]N =1, (IV.3)

It can easily be seen that the terms of this expansion correspond to the

values of Prl for all n from 0 to N, so that

N\
Z P_=1 (IV.4)

n=0

The expectation value of n is E(n),

N N
E(n) = Z nPn= z nPn, (IV.5a)
n=0 n=1
N N
N-n (n-1) N-n
- p (1-p) NI _ (L - p) ,
E(n) Z n R = PN Z e RIS o= (N -t (IV.5b)
n=] n=1
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Ifwelet M=N-1land m=n-1, then M -m =N - n and

m M-m

1 - M!

E(n) = pN E P T (pI)I - m)! =pN -1, (IV.5¢c)
m=0

E(n) = pN, (IV.5d)

as one might anticipate. We can substitute in the Bernoulli distribution IV.2

to calculate the probability of observing n events, given p and the expected

value E(n).
In order to calculate the variance of n from its distribution function,

we calculate

N N
E(nZ) = Z nZP = Z nZP , (IV.6a)
n n
n=0 n=1

and making the same substitutions,

5 M m(1 )M-mM,
D) =Np Y (m+ 2 {lopl M (1v..6b)
m=0
M M
5 m . _M-m, m,. _\M-m,
B =Np| ) mo B My ) Rl M e
m=0 m=0

which by comparison with IV.4, IV.5b, and IV.5d gives

E(n%) = Np(Mp + 1) = Np [Np F (1 - p)]. | (IV.6d)
Recalling that

var(n) = E(n’) - E@ 2, (IV.7)

var(n) = Np(l - p) = (1 - p) E(n), (Iv.8)

so that the standard deviation o of n is given by

s = N(1-p)E(). (IV.9)

n

Since p is usually very small, it can usually be neglected.
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The Bernoulli distribution function given by equation IV.2 can be consid-
erably simplified in form in those cases where N is very large, p is very
small, and n is very much less than N; fortunately this is often true. We

make the approximations

N! n

W-TN(N-I)(N-Z)... (N-n+ 1)=N", (IV.10)
(1 - N x PN PR, (Iv.11)

Inserting these and equation IV.5d into equation IV.2 we get what is known

as the ""Poisson distribution,"

_E@™ o E(n)

n n! ) : (Iv.12)

P

As might be expected from the approximations involved in its derivation,

this distribution gives

var(n) = E(n), (IV.13a)
Lo = N E(n). (IV.13Db)

-

For cases where the Poisson distribution is a valid approximation to
the Bernoulli distribution, and n is quite large, the Poisson distribution may be
well approximated by the Gaussian, or normal, distribution. This approxi-
mation is obtained by replacing n! by Stirling's approximation, and by trans-

forming the variable n to x = [n - E(n)]. We then have

p o [E@EO ER (p) R e ) v, 14a)
x [E(n) + x] ! [E(n)]! [E(n) + 1][E(n) + 2]... [E(n) + x]
_ [E@]ER -Eln) [En)]*
P = . .
X [E(n)])! [E(m) + 1][EMm) + 2]... [E(n) + x] ' (IV.14b)

E(n)
[E(m)] ! =~ N2rE@) - [%‘-‘ﬁ] : (1. 14c)



< AmeanT

-68-

AP = L : L (IV.144)

*  J2rE(@m) [1+E7%)-][1+§m]...[1+f"m]’

Since n is large, n - E(n) will be small compared to n, so that we can

approximate
l:l + —Ejz-r—lyi]z eZ/E(n) when |Z| < lxl . (IV.14e)
Consequently,
= 2
x+ 2E
[1+ 1I/EM@)][1+ 2/E@)]... [l + ﬁn)-:l ® exp z m/E(n)]= e( x)/2E(n) .
m=1 (IV.14f)
Neglecting x compared to xz, we have finally
1 -XZ/ZE(n)
P =—o=— e (IV.14g)
* N2wE(n)
or
1 -x2/20'x2
P = — e (IV.14h)
x 2
® 270
X

which is the normal distribution with var(x) = E(n).

3. Distribution of Expected Values for a Given Observed Count — Small
Sampling

We can attack the inverse problem very easily. We now wish to know

the expected value of n, and its variance, if we have an actual observed value n.

This is most simply approached for the case in which the Poisson
distribution is applicable. We rewrite equation IV.12, letting the symbol u

stand for E(n) for convenience,
n -u

_u'e
P ()= = (IV.15)

to show that Pn(u) is a function both of u and of n.

[
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We now state the problem: for an actual count n, what is the probability
that the actual value x of u lies between u and u + du? The question may be
rephrased: if we consider repeating the identical experiment a large number
of times, what is the predicted value of the average result given that the result
of a single experiment is n; and how reliable is the prediction, that is, what
is its variance? In cases where the number of counts is large, it can be seen

that equation IV.15 is the solution of the inverse problem when written

n -x
X €

Pn(x) dx = = dx. (IV. 16)

From this we get the expected value of x from

0 o0 ,
E(x) = S xP_(x)dx = —1—. g e X 4y = -(EL,_L , (IV.17a)
O n n. 0 n.
~E(x) =n+ L. (IV.17b)

The fact that the expected value is larger than the observed value is
surprising at first, until we consider that even if the observed value is zero,
the expected value need not be zero.

Calculation of the variance of x gives

var(x) = So XZPn(x) dx - B2, ' (IV.17¢)
var(x) = (“_:2_’_ ctnt 1P =+ 2+ 1) - (n+ )2 (IV.17d)
var(x) = n+ 1 = E(x). (IV.17e)

4. Distribution of Expected Values for a Given Observed Count - Large

Sampling

Rainwater and Wu8 did not consider the problem of predicting expected
count and count variance for cases where an appreciable fraction of the atoms
present might be expected to give rise to counts. For such a case to arise,
two conditions must be met simultaneously. First, the counting equipment
must have a high efficiency for detection, which includes both a high solid

angle for radiation from the sample to enter the counter and a high probability
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that entering radiation will cause a pulse in the counting circuit. Second,

the counting period must be at least an appreciable fraction of a half-life of
the species involved. Such conditions are met in experiments involving short-
lived species formed in low yield, where in order to obtain data of maximum
reliability it isnecessary to use high-efficiency counters and count for extended
periods. Experiments designed to detect minimal amounts of certain con-
taminants may also be conducted under these conditions, where very long
counts are resorted to.

Under these conditions the assumptions which lead to the Poisson distri-
bution are no longer valid. We must therefore work with the more accur‘ate
but less tractable Bernoulli distribution. Our problem remains the same as
in the previous section: Given an observed number of events n, what is the
expected average number of events during a number of identical experiments,
and what is the reliability of that number ?

We approach the problem via a conceptual experiment. We assume that
the experiment is carried out a very large number of times with a variety of
different numbers of atoms of material. Let the number of times the experi-

ment is performed be w and the probability that the number N of atoms in a

.given experiment has the value z be TTN(Z). Let w be so large that the number

of experiments conducted in which N has the exact value z be W'rrN(z) as
precisely as we choose.
Then if N has the value z, the probability that the number of counts

observed, x, has the precise value n is given by the Bernoulli distribution.

pn(l _p)z—nZl
n! (z - n)!

Px(n, z) = (IV.18)

where p is, as before, the probability that a single atom will decay and give
rise to a count during the course of the experiment.

The number of times this result will be observed in w experiments, if

w is sufficiently large, is
mx(n, z) = WTrN(z)Px(n, z). (Iv.19)

We know that if n events were observed there were at least n atoms

in the sample. Therefore the total number of experiments, for any value of
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N equal to or greater than n, which will give rise to a value n for x is

00
Mx(n) = Z WTrN(z)PX(n,z). (IV.20)

Z=n

Consequently, the fraction of the experiments leading to the value n for
x in which N had the value z is given by the ratio of equations IV.19 and

1v.20. If w is sufficiently large, this constitutes a definition of probability,

so that
wt. (z)P_ (n, z)
P (z) = = (Iv.21)
z WTrN(z)PX(n, z)
z=n
or
P (L - p)* M2t (2)
Pylz) = = (1v.22)
, , po(l - p)* !
ni(z - n): Z n!(z - n)! TTN(Z)
z=n
or, simplifying,
1 Z m..(z)
Pyl = Z(.z(} ;)?) B ~ (Iv.23)
Tzl (1 - p)Z
Tz ™)
z=n

In order to proceed further it is necessary to make an assumption. We
assume, lacking any other information, that any value of N on our series of
w experiments is as likely as any other; or alternatively, we assume that if
we conduct our experiments in such a way that all values of N are equally
likely, the conclusions drawn from such a set of experiments may be applied
to actual laboratory results.

If we make such an assumption, the TTN(Z) are all equal and will cancel.

In that case we are left with an expression

z! (1 - p)?

[~¢]
ST TR
zZz=n

which is obviously normalized.

Py(2) = (IV.24)
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It is necessary to evaluate the sum of the infinite series in the denomi-
nator. The value of this series depends only on the constants n and p. Let

us define the symbol

o0
- 2! (1 - p)”
Q, = z B Ry 1l (IV.25)
z=n :
If nis zero, then
o0
— z 2 3
QO—E(I-p)=l+(1—p)+(1-p)+(1—p)+.... (IV.26)
z=0

Since 1 - p is less than one, this is a convergent geometric series with

a ratio'l - p, and

1 1
Q = = =, IvV.27
o 1-{-p p ( )
Let us now consider Qm+]’ andlet y=2z - lor z=y+ 1.
> d 1
- o Z

a - 2 (1 -p)” (y + 1! (1 -p)Y (IV.282)

m+ 1 [z-(m+1)]l (y+1-m-17T " )

z=m+l y=m

)Y

o0
Q +;=(1-p) Z {y + 1)-%(},1—_'%;!— ; (IV.28b)
y=m

[ o0 [+.¢]
VRS 4 TR

Q_,;=(L-p) Z y - _(__F_Y-Y(l_ mP? + Z 7——)-”';1_ nli): ) (IV.28c)

_y=m y=m

[~ ©oC

1 Yy
ey = (1-B)| ) fy - m+m) gl g |, (1v.284)
y=m
= OO [ve]
! - b4 1 - Y

Q_.;=(1-p) z (y-rn)'7——)—"'}fl_nf)I +m z —(——)-ry'(yl-ri), ta_|,

| y=m y=m

(IV.28e)




o0

_ . v (1l - p)Y
Qo +1 " (1 -p) Z (y - m) ——(y—-_—rg)-!—"' (m + 1) Qm . (Iv.28f)
y=m+1l

Note the change in the lower limit on the summation sign. This is
allowable, since the first term when y = m is zero. Dividing (y - m), which

is not zero, into the numerator and denominator in the summation,

00
= (] - y! (1 - p)”
Qm+1 (1 - p) Z [Y e I)T + (m + 1) Qm (IV.28g)
y=m+]1
or ]
Q +1=(1-p) [Qmﬂ +(m + 1)Qm] (IV.28h)
which gives, immediately,
o . =(12B) m+ 1o (IV.28i)
m+1 P m :

and since QO = 1/p from equation IV.27,

- n\Y '
Q =(i-p) . ¥ (IV.28j)
y P P
It should be noted that equation IV.28c can be transformed into a useful
form:
> Q
y
Lyl -p)’ _ m+l _.m+1-p
z y v ) I - p Qm B — Qm. (IV.29)
y=m

We now wish to get the expected value and variance of the number of
atoms in the sample, as well as the expected value and variance of the number

of counts in the counter. The expected value of N is

o0 [o0]

ol ' ,
E(N) = z 2Py (z) = Z z - '(%-IPT)’ : (IV.30)
n
Z=n Z=n

Substituting Qn for the equivalent summation in equation IV.24. We then

have, substituting in equation IV.30 from equation IV.29,
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[>0]
E(N) Z iﬁ(lfﬂp_z =Q_1 (M : Qn>, (IV.3])
Z=u n P
E(N) = L;'p- (IV.32)

The variance of N is obtained from the relationship

var(N) = E(N%) - B[N 2. (IV.33a)
0 e 0]
E(N?) = Z 2%p N2 = Q_l Z 2 zz“_'np) , (IV.33b)
Z=n
o0
2.1 2 z! (1 - p)?
E(N7) = =— Z [z - (2n + )z + n(n + 1)+ (2n+ 1)z - n{(n + l)]j*?—,—- ,
Q z - n)!
n —
zZ=n (IV.33c)
o0
2, 1 z! (1 - p)
BN Zn(z'n)[z'(“ i

o0
(2n + 1) z! (1 - p)?
+ q Z zﬁ— -n(n+ 1) (IV.334)

[+0]

2y 1 z! (1 - p)? n+ 1 -
E(N®) = L (z—n)[z--(n+l)] —(\)L +(zn+1)(\_P)
Q T
n z=§2 "
-n(n+ 1), (IV.33e)
o0 . .
E(N?) = on Z [zz-!-((ln-+p2))]! +[(2n u 1}’)(’1 LR R 1)], (IV. 33f)
z=n+2

0 2
E(NZ) - C;):Z +[(2n+ ;)(n'*' 1) - (n%+ 3n + ])J = (1 ;) (n+ 2)(n + 1)

. [(Zn + )n+ 1)

D - (n2 + 3n + 1)], (IV.33g)




'E(NZ) _(n +:%(n+ 1) 2(n+ 2)(n+ l)p— (2n+ 1)(n+ 1) + (n; 2)(n + 1)
-n  -3n-1, (IV.33h)
2
2, _n+ 1, (n+ 1) 3(n+ 1) )
E(NT) = —— + 3 - > T L . (IV.33i)
Therefore
2 2
Var(N)=n;1+<n+l -3(r““1)+1-(n+l -1), (IV. 34a)
p P p P
n+l1l n+1
= - , .34
var(N) 2 5 (IV.34Db)
var(N) = (n + 12)(1 - p) . (IV.34c)
p

In order to determine E(n), we recall that for the Bernoulli distribution

E(n) = E(pN) = pE(N). (IV.35)

- E(n)=u=n+1-p (IV.36)

fl

which may be compared with equation IV.17b, derived from the Poisson
distribution. It will be seen that the approximations involved in converting

the Bernoulli distribution to the Poisson distribution result in the loss of the
term (-p); it is easy to see that if p approaches 1 (that is, if any atoms
present are nearly certain to be counted) then the expected value of the count
approaches the value of the count itself; for example, it is no longer likely
that the expected value will be much greater than zero when an actual observa-
tion of zero is recorded.

The variance of n is calculated from

f

var(n) = var(pN) = pzvar(N). (IV.37)

var(n) = (1 - p)(n + 1) (IV.38)

which differs from the variance deduced from the Poisson distribution by the
factor (1 - p). It is obvious that when p is one (that is, that every atom
present is certain to count), that the result is not subject to variation; hence
its variance must be zero, as it is; the number of atoms in the sample can be

measured with certainty.



5. Correction for Counter Background

It can be shown (see Rainwater and Wu8) that in cases where the Poisson

distribution can be used it is not necessary to assume that p is constant for
every atom; in other words the presence of many different species in the sample
does not affect our statistical conclusions. If we consider the counter back-
ground to arise from a ''species' with a very long half-life, its expected value
and variance will be given by IV.17b and IV.17e. A word of caution is in order:
if the counting eéiuipment is malfunctioning in any of a number of ways to give
rise to a nonrandom background, the results no longer apply, in particular as
regards variance. If the background is random, then a me’asurement of
background is independent of the gross count taken on the sample, in the
statistical sense; consequently the covariance of the two measurements is
zero, and the variance of a net count after subtracting the result of a back-
ground measurement is the sum of the variances of the background measure-
ment and the gross count.

When the Poisson distribution is not applicable to the sample, the situa-
Jtion becomes more complicated. Fortunately, the Poisson distribution is
always applicable to the background. It is necessary to take a background
measurement, to deduce from this result the expected background count
(which is the observed count plus one) and to calculate the probability of each
possible value b of the background PB(b) from zero to g, where g is the gross

count recorded for the sample. Each such probability is then normalized by

the sum of all the probabilities i PB(b); they must be normalized from the
b=0

Poisson distribution since the background count cannot take on all possible
values; negative values of the net count are not possible. If the number of
events in the gross count, g, is considerably larger than the background count
the normalizing factor will be very nearly one, but for counts not greatly in
excess of background it is very different from one.

Each renormalized probability that the background count had the value
b is now the probability that in the gross count the count X due to the sample

had the value g - b, which may be written

El; " Py(b) =P (g - b) (IV.39)
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where l/Rg is the renormalizing factor,

=+ | (IV.40)

1
R ’
g
i P (b)

b=0

and PB(b) is calculated from the Poisson distribution IV.12, with u = E(n)
taken as the observed number of events during the measurement, plus one,
and n taken to be each value of b in turn.

We then calculate E(N) and var(N), or E(n) and var(n), as desired, from
equations IV. 32 and IV.34c or IV.36 and IV.38., for sample count by multiplying
each expected value by Px(g - b) and summing over all values. Let the ob-

served background count (over the same period) be B; then

u=p+ 1=E(B) (IV.41)
and
uje—u
Rg(u) = Z 7 ! as g/u — w, (IV.42)
j=0
Then
g g
_ n+1-p u_ne_u. ]
=) ( P ) CEE A (Lv.432)
b=0 g
g
b -u
+ 1 -
E(N) = <§_pl_P - %) “bf . Rl(u) , (IV.43b)
b=0 g
g
b -u
-gtl-p _1 ue 1
b=0

!
aQ
+
—
1
e

E(N) = &+ &£ -

g
Z u’e™™ . 1

b - 1! R ° (IV.43d)
b= g
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Let y =1 -1, then

R (u) g -u
=8+ 1-p u  Tg =B*l-p-u_u ule ,
EN) P P Rg(u) P P g Rgiuf
(IV.43¢)

becomes very small and may be neglected. In this case

E(N)ng’lp‘P‘u:g‘If‘P. (IV.44)

If the observed background count is taken over a period tb of different
length than the duration of the gross count tg’
t

E(N) = 5 (IV.45)
Since we expect the background count to be uniformly distributed in time
The variance of N is calculated from equation IV 33
g
2 b -u
2, _ n+ 1 (n+ 1) 3(n+ 1) u e
b=o LP p g
g 2 b
-u
E(N2)=Z[i'§+l+ (g-2+1) - 3(g-pb+1) +1]\;;() , (IV.46b)
b=0 P P ’ gu
2y =2
var(N) = E(N°) - E(N) “. (IV.46c)
Going through the algebra as before, and remembering that
g -
uP -t & b -u g b -u gl (b-1) -u
b € = bi = u e = u u ¢ = uR (u)
b! b! (6 - IJ7 6 -1IJ7 g-1"""
b=0 b=1 b=1 (b-1)=0
(IV.47a)
g g-1
b _-u - b-1+1 -y
2 u e _ u e u e
Zb —5r— = b BT © [(b-])+]7\)_,__]
b=0 b=1 (b-1)=0

2
= uRg-l(u) +u Rg_z(u), (IV.47b)
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\ we finally get, after a certain amount of algebra,

R (u) 2R (u) R (u) |2
_(l-pMg+ 1), u Tg-1 u g-2 g-1
var(N) = te o T2 | &’ - R : (IV.48)
p° P Rg(u) b ae g
If, as before, g > u,
var(N) =~ - PMg+ 1) + up (IV.49)
2
P
As before, when g > u,
E(n) = E(pN) = pE(N) = g - B - p, (IV.50a)

var(n) = var(pN) = pzvar(N) = (1l -pMg+ 1)+tup=(1-p)gt+ 1)+ p(p+ 1)
(IV.50b)

When g is not much greater than u, the Rg(u), Rg-l(u)’ and Rg-Z(u)
must be evaluated and the full equations derived from equations IV.43e and
IV.48 must be used. This procedure is extremely laborious. Fortunately,
we are frequently concerned with the parameters of the reaction forming the

“active species, rather than with the actual numbers of atoms in the sample -

as will be shown, the Poisson distribution is always applicable in such a case.

6. Errors of Extrapolation

It rarely happens that counting can be started immediately after the
creation of the radioactive species. If some delay occurs between the time
, and the time of the measurement, t, one

0 X(t-tp)
can extrapolate back to ty by multiplying by the exponential factor e 07,

of interest to the experimenter, t

It is important to realize, however, that no matter how precisely the counting

rate at t is known, and no matter how precisely the half-life or decay

constant is known, a statistical uncertainty is introduced by the extrapolation

itself. This is readily seen by considering that the atoms still present at t

are those which have not decayed in the interval t, to t. Since those which

0
have decayed are subject to statistical fluctuations, the sum of those still
present and those which have decayed is subject to such fluctuation.

The variance of the extrapolated number can be derived as follows: Let

the number of atoms present at tO be NO’ the number of atoms decaying in
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the interval to to t be n, the number of atoms remaining at time t be N;
the extrapolation factor is then NO/N.

Now the probability p of one atom decaying in the interval t_ to t is

0
1 - e Mt-to) where \ is the decay constant of the species.

The probability that n atoms decay during the interval ty to t is
obtained from the Bernoulli distribution, since p is not necessarily much

smaller than 1. We have, therefore,

N

N, !
- ._n
P, =p (1-p)

o " 0
nol (NO - n)T

(IV.51)

as the probability that n atoms will decay during the interval of interest.

Substituting

a)n = N0 - N, (IV.52a)
—)\(t—to)

b)p=1-e , (IV.52b)

we get

-a(t-t No-N N.!

P =|1-e 0 (e MN . 0 (IV.53)

n (N0 - N). -NT~ :

Now the probability that n atoms decay is the same as the probability

that N atoms remain, so that

PN = Pn. (IV.54)
The form of the distribution func1(:ion {or N is then seen to be a Bernoulli
-A(t-t
distribution with a probability p' = e 0 » and from equations IV.32 and
IV.34c,
N+1-p' Me-to)
E(N,) = TE =(N+ 1)e -1, (IV.55a)

. Alt-t )] 2n(t-t.)
var(N,) = (N(* ;)2‘1 P) - N+ 1)E e 0]. e 9. (1v.55b)
pl




The extrapolation factor is given by

')‘(t‘to)i] Ne-ty) Me-to) (gt
e == =

)
; + e 0 (IV.56)

N (t-tg)

| N+t1-e
e:E(NO)/N [ N

which for N large compared to 1 is simply e , which is as expected;
only for extremely small values of N is there an appreciable correction. The

_yvariance of the extrapolation factor is given by

[ —x(t-to)‘| 2\ (t-t )
1 (N+1) UJ -e e
var(F ) = var(N,) = (IV.57)
e -1\—12- 0 NZ
which for values of N large compared to 1 simplifies to
- e')‘(t'to) 27 (t-t )
var(Fe) = N e . (IvV.58)

When extrapolating from a known number of atoms at time t, with known

variance,back to a desired time tO’ we have from Theorem V, Chapter III,

N, = NF_, (IV.59a)
2 | var(N) var(Fe)j|
var(N_.) = (NF [ + , (IV.59b)
0 e 2 2
) N Fe

and hence, unless N is very small,

—x(t-to)
2 va.r(N)+ 1 -e

0 NZ N

var(No) = N (IV.60)
If instead of extrapolating numbers of atoms we adopt the more usual
course of extrapolating counts per unit time A at time t back to counts per

unit time A, at time t if the efficiency of our counter is y we have

0 0’

A = q\N, (Iv.61la)
AO = n)‘NO’ (IV.61b)
A0 = AFe, (IV.61c)

and consequently, for N considerably greater than 1,
-\ (t-tg)
_ A 2|var(A) 1 -e
var(AO) = AO + = A\n |- (IV.62)

Al
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The last term within the parenthesis implies that if we wish to know the

variance of an extrapolated number, we must know the efficiency of our counter:

—

we are faced with the necessity of absolute counting.

Fortunately, the nature of the expression permits a simplifying approxi-
mation which in most cases eliminates this requirement. The ""extrapolation
variance' has an upper limit; since n is at most 1, its asymptotic maximum
value at long times is )\/A. If this value is small compared to var(A)/AZ the
extrapolation error may be neglected without seriously affecting our estimate

of the precision of our answer.

7. Statistical Reliability of Measurements on Nuclear Reactions

Let us consider an experiment in which a sample of M atoms is
immersed in a flux ¢ of particles per unit area per second and left there for
a time t. The sample is then counted immediately and n events are recorded.
It is desired to calculate the cross section o of the reaction, and its variance,
from the data.

This problem can most readily be approached by redefining p to be the

probability that an atom of original target material will react and subsequently

give rise to a count in the apparatus. From this definition it will readily be

seen that, in order for p to be appreciably greater than zero, all of the
following conditions must be met: (1) An appreciable fraction of the target
material must be consumed in the nuclear reaction; (2) the reaction must be
carried out in a time short compared to the product half-life; (3) the counting
measurement must be carried out over a time long compared to the half-life:
(4) a major portion of the sample must be placed in the counter; and (5) the
counter must be of high geometry and high efficiency. These conditions are
mutually exclusive under present technology, since conditions (1) and (2)
require enormous fluxes available only in nuclear explosions and condition

(4) is not possible to fulfill following a nuclear explosion. Consequently p is

always small, and Poisson statistics always applies when deducing the vari- '
ance of a nuclear reaction parameter such as flux, reaction cross section, or ’

amount of target material.
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V. THE RESOLUTION OF DECAY DATA

]. Nature of the Problem

We have seen in Chapter II that the expected value of the activity of a
sample of radioactive material changes with time in a manner which may be
described by a linear combination of negative exponential functions, that is,
functions of the form exp(-)\it), where each )‘i is associated with one of the
species present so that for n species present we have n terms, plus a
possible constant term if some species are being formed via a nuclear reaction.
We have seen further that certain physical properties, such as reactor flux
or reaction cross section, may be derived from the values of the coefficients
of these exponential terms. It remains to apply the statistical techniques of
Chapters IIl and IV to the resolution of decay data, that is, to determining the
best values for such coefficients from a set of experimental observations.

We have seen in Chapter II how these coefficients may be estimated
graphically; however, for the best solution to our problem it is necessary to
resort to a least-squares solution following methods described in Chapter III,
Section 5. The data (obtained as events per unit time) are to be fitted to a

function of the form
= 23
Yj = z x.e J (vV.1)
i=1

where tj is measured at the midpoint of each measured count, or for extreme

precision (see Chapter II, Section 8)

C M halet)
5T Z "1 N (BT, (V.2)
i=1 R

where (At)j is the duration of the jth counting measurement and ’cj is mea-

sured at the start of the count. The coefficients to be determined are the

X,; proper weighting will be discussed below in detail.

We shall assume in this chapter that the \ are precisely known for all
the species in the system. We shall consider the proper weighting of the data
for a least-squares solution, the kind and magnitude of the variances which
contribute to the weighting factor, and the effect on the results of any unantici-

pated variance. The X\ for our solution are assumed to be constants: we



shall investigate the systematic effect on the resolution of slight variations in
the values of the \. We shall also consider briefly the problem of rejection
of data which appear to fall outside the expected range of variation.

In addition, we shall also consider briefly the analysis of replicate
samples, the analysis of the sources of variation between replicates, and the

proper averaging of replicate results.

2. The Least-Squares Solution; Weighting of the Data

We have seen in Chapter III that the squares of the deviations of points
Yj should be weighted by the reciprocals of the variances of the yj before
summing for the least-squares solution; alternatively, each equation describ-
ing a bit of data yj should be weighted by the reciprocal of the square root of
the variance of Yj before commencing a matrix solution.

If every count is recorded, and the counting equipment is perfectly
stable, the variance of an observed count is given by equation IV.50b of Chapter
IV. In the usual case, the probability of a single atom being counted is
negligibly small and the gross number of events recorded is very large; the
variance of the event is then the gross number of events, plus the number of

- background events observed in a measurement of equal duration. Frequently,
the background is observed in a measurement of one duration tg and the gross
count is observed in another of different duration tB; if the number of gross

and background events are G and B respectively, and the desired net counting

rate is z, then

z=t£-t£5g-b’ (v.3)
G B
and
var(z) = var(g) + var(b) (V.4)

by Theorem IV of Chapter III, since measurements of g and b are independent.
By equation III.14,

var(z) = var (g) + var (t£>: L var(G) - 2 var(B). (V.5)
2 2
G B tG tB

When the Poisson distribution function is applicable,

var(z) = G+ 1 , B+l

2 2
ts tg

(V.6)

e
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and when both G and B are large compared to unity,

var(z) = Eg— ?ll_ (V.7)
G B

If a scaling circuit is used in which the register records only every SG
events during the gross measurement, and every SB events during the back-
ground measurement, and if only integral numbers of registered events are

recorded without regard to incompleted sets of S or SB events, an additional

source of variance is introduced. Two types of cci}rcuits are in common use:
in the first type, any events arriving after the last completed register are
ignored when the scaling circuit is reset and recorded, so that a measurement
which is only 1 count below a completed set of N + 1 registered sets of events
is recorded as N registered sets of events; in the second type, the reading

on the register is increased by 1 if the next set of S counts has been at least
half completed. With the first type, a reading of N registered sets of events
impliés a number of events in the counter anywhere between NS and (N + 1)
XS - 1;with the second type, a reading of N registered sets of events implies a
number of events in the counter between (N - -21—)5 and (N + -]Z)S - 1. Any
.value in the range is equally likely in either case. The expected value of the
number of events in the counter is obviously (N + %-)S - % in the first case

and NS - % in the second case; the distribution function in each case is seen
to be a rectangular function S - 1 ccunts wide. For normalization, the height

of the rectangle must be

S l_ T so that in the first case

0, u < NS,

S
S-1°

0, u>(N+ 1)S -1,

Px(u) = NS<u<(N+1)s-1, (V.8a)

and in the second case,
! 2 ’

B 1 | 1
Px(u) = 51 (N - Z)SS‘ u < (N +E>S -1, (V.8b)

0, u>(N+El)S - 1.

The variance of this distribution may be obtained from equation III.33

for either case,
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N+=|S-1 (N+1)S-1
12 dx
(N)=S‘ 2 x - NS+ 5 == =S
var ( 2) [ 1 NS

x(y - N+i)s+_12 &y . (v.9
2 2/ 8-
The identity of the two integrals may be seen by a transformation of variables,

y = x+ ZLS. Upon performing the integration and simplifying, the result is

2
var(n) = (S]-“Zl) . (V.10)

This variance must be added to each of the variances included in equation

V.5 for both gross and background measurements, so that in place of equation

. (56 - l)2+ (5 - 1)

V.7 we have

var(z) = £ + ti > 5 (V.11)
G B 12t 12t

When high scaling factors are used, the variance arising from neglect of the
"interpolation lights'' between even registers can affect the computed variance
quite appreciably.

) A final term to be included in the estimate of the variance of each
measurement depends on the counting equipment. It seems reasonable to
assume that the equipment itself is subject to variation, for example in the
positioning of the sample on consecutive measurements or in the level of
the counter discriminator; it also Seeéms reasonable to assume that the effect
of such variation on the counting rate is proportional to the counting rate.

We therefore postulate an additive variance for both gross and background
counting rates, proportional to the square of the counting rate; the constant
of proportionality will be dependent on the actual instrument and perhaps on
the species counted.

Assuming for the moment that the constant of proportionality depends
only on the instrument, we must realize that the sample positioning mechanism
is part of the instrument for the gross count, but not for the background count;
the constants for the two measurements will therefore be different. Estimation
of such constants is extremely difficult, especially when they are small, since
the only measurement that can be made also involves random variances of the

types described above; a technique will be discussed later.
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. e 2 2
If the variance due to counter variation is y g for the gross count and

pzbz for the background count rate, equation V.11 then becomes

2 2
(s - 1) (s - 1)
¢ +\B L. Vgt + g%l (v.12)
K 12t

var(z) = ;C-g— + t—t-)— +
G B 12t

This expression is used to evaluate the proper weighting factors for use in a
least-squares calculation of decay data, as described in Chapter IV.
A matrix inversion method is highly desirable, since the inverse matrix

of the normal equations (see equations III.92d, 104f, 130, and 142g)(multiplied

2
X
bY m - n

the parameters; consequently, the diagonal elements of that matrix are the

when this term is greater than unity)is the covariance matrix of

variances of the X, We then have an estimate of the precision of the amount

of each component present, since the standard error of X, is the square root
of its variance.

If the variance due to counter variation is appreciable and is also de-
pendent on the species being counted, proper weighting for a least-squares
solution for a multicomponent system becomes very laborious. Estimation

“of the variance of a given measurement a priori is impossible, since the
proportions of the various kinds of radiation making up the observed count are
not known until after the resolution is done; if the counter variation constants
for the various species are known from independent measurements on single-
component systems, the calculation may be done by successive approximations.
Such a case may arise when the amplifying circuit of the counter has an energy
cutoff which is subject to random drift; radiations producing pulses in the
counter close to the cutoff level will be much more severely affected than
those which produce pulses well removed from the cutoff. The practice of
counting single photopeaks for decay, discriminating out pulses of both higher
and lower energy than the gamma radiation of interest, is particularly subject

to variation of this kind.

3. Estimation of Variance Due to Instrumental Variation

In order to make an estimate of the variance due to instrumental varia-

tion from a set of experimental data, it is necessary to resort to an iterative
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process. If the variance due to instrumental background is desired it can be
obtained from a series of background measurements by the technique to be
described below; in almost all cases it will be trivially small compared to the
instrumental variation while counting an actual sample. In what follows we
neglect it.

We resort to the XZ test described in Chapter III, Section 5 (equations
II1.138, 139, and 140) to give us an indication of the magnitude of instrumental
variance. We perform a least-squares solution using equation V.12 to give
the weighting factors, assuming initially that the constant Yy is zero. If XZ
is significantly larger than its expected value, we repeat the solution using a
trial value of y which is believed to be reasonable. The new value of XZ will
of necessity be smaller; if it is still too large, the trial value is increased and
the calculation repeated again. Once a trial value of Y is found which reduces
XZ below its expected value, a 'best" value of y can be approached with a
limited number of iterations by any one of a number of schemes of interpola-
tion between trial values.

This system makes the obviously false assumption that the observed
value of XZ for this particular set of observations is precisely equal to its
expected value; the "best value' of y found from any one set of data is rel-
atively worthless. However, it seems reasonable to assume that the observed
XZ values of a number of sets of good data, properly weighted, will be distrib-
uted about the expected value; consequently we expect that the set of calculated
"best values'' of y will be distributed about the true value. A large number of
sets of observations should then give a number of values of vy which, when
averaged, should give a very reasonable estimate of Y-

Such a procedure involves a very large amount of sample preparation,
counting, and especially calculation; if the experimental data to be processed
are not of the highest precision the effort is probably not justified. The use
of high speed computers for the iterative calculations is practically mandatory.

A more rapidly converging method can be derived as follows: Let

Yi = the '""true" value of the count rate at time to
n; = the least-squares computed value of the rate at tes
V= the observed value of the rate at t.

ri = the residual at ti’




i
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' that is,

TS = ng - Yy (V.13)

Now to a good approximation,

; E(riz) = E [(Yi ) Yi)ZJ - °'12 + YZYiZ (V.14)

so that
2 2
r, -0, >
Y~2

1

'
| where n; is computed without allowance made for instrumental variance.
|
!
|
i

If there are m observations and n components there are m - n degrees

of freedom in the system. Therefore we expect that

rZ 0‘2
- - . 2
ml— n z : 2 - ) v (V-16)

In three cases selected at random an estimation of y by this method

gave values which were within 2% (in each case) of the value obtained by the

iteration method after a dozen iterations. The value so obtained can obviously

be used to recompute the n; to permit an iterative improvement in y.

4. Effect of Input Parameters on Resolution

We have considered the decay constants )‘i of the system under consid-

eration to be fixed and absolutely known up to this point. A detailed considera-
tion of the determination and precision of the )\i must be deferred to the

. following chapter; it is, however, convenient to consider at this point the

effect of a slight change in one of the \; on the derived values of the system

Parameters x, and on the goodness of fit of the data to the calculated curve,

as described by XZ.

The set of n normal equations for the system as described in Chapter

III, equation III. 92d with appropriate substitution, are

-(x At ')‘ kY

n m
Z . varY Z TaT(y_)‘ (V.17)



-90-

for a set of m observations on n components, where k has each value from
1 ton. We desire to know the effect on each»xi of a small variation in a
particular \, symbolized by )\s; in other words, we want the quantity
ox,
-5-):-1— for each i and. for each s.

° If one performs the operation of partial differentiation with respect to

N\ _ on the set of equations V.17, one obtains the set of equations (1 < k < n)
s

=N )t
n m -()\.+)\ )t. n m ik’
ik’ axi ) E ) Z tj(éis+ 6ks)e
var(y.) 8)\s i var(y.)
i=1 '= ) i=1 J=1 .
m -)\ktj
_] ks
Z var(y) (v.18)

j=1
where
5..
1]
= l, i= j,

which upon rearrangement gives

(AN )t
n m e—()\i+)\k)tj axi n m tje i "k
Z Z var(y.) BXS - E Xi(éis+ 6ks) Z var(y.)
i=1] j=1 J i=1 j=1 J
-\, t.
y t e k7
- 5 ﬁ(_)_var - (V.19)
j=1

for any value of 1 < s < n. If this set of equations is expressed in matrix
form it will be seen at once that the matrix of the coefficients of the new set
of unknowns 8xi/8)\s is identical with the matrix of the normal equations; if
these have already been solved by matrix inversion, the inverse matrix is
already available. The values of the x; from the solution of the normal
equations may be inserted into the right members of the set of equations to
give the components of a vector vy ‘which, multiplied from the left by the
inverse matrix of the normal equations, yields the vector whose components
are axi/a)\s. If a matrix P is formed whose columns are the set of vectors

Ve with s taking on the values 1 to n, in turn, then this matrix multiplied
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from the left by the inverse matrix of the normal equations will give a new

matrix Q such that

which is a compact solution to our problem.

It is perhaps more convenient to express the components of Q in terms

of fractional changes and to convert Q to a matrix Q' such that

A Ox, T 8Xi

! =._S 1._S8
Q is X, O x., 0T (v.21)
1 S 1 S
where
in 2
TS =~
s

The negative sign is inserted to put the significance of the number so derived
in terms of an alteration in the half-life value, rather than the decay constant,
since most workers are used to thinking in terms of half-lives rather than
decay constants.

We can now derive the effect of varying an input A on the {it of the data

to the calculated curve. We have

m m Vs i
z var(yi - Z v;}](yj) : (v.22)

J=1 =]

DR PR (]

5 Z var(y.) =l . (vV.23)
J

e

Therefore

From the least-squares solution we get the values of the X, and from the
matrix Q described above we get the values of the Bxi/a)\s. A positive value

of this derivative means )‘s should be reduced (i. e., the half-life should be
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increased) to improve the fit; a negative value means the reverse. This
calculation can be made the basis of an iterative method for improving the

values of the input )\, providing that fairly good values are available initially,

5. Criteria for the Rejection of Data

It frequently happens that a set of data contains one or more points which
do not actually belong to the set, due either to an instrument malfunction or
to human error on the part of the experimenter. Typical errors are: mis-
reading the instrument; counting the wrong sample; counting the sample in the
wrong counting position; failing to remove or insert an absorber; failing to
remove a previous sample; failing to set proper discriminator levels; failing
to record the data in legible form, resulting in misreading of the written data;
and so on ad nauseam. If the instrument (or the operator) is so erratic that
many points are subject to such nonstatistical errors, the experiment is
worthless; there is no way of selecting the good data from the total set a priori.
If no further information is available, the experiment should be redesigned.

If the fault is in the operator, suitable corrective action sometimes requires
considerable ingenuity.

If the set of data contains only one or two erroneous points, these can
usually be detected by inspection of a graphical presentation of sample activity
plotted against time. This is, however, a subjective method and takes no
account of the precision of the individual measurements. An objective criterion
for rejection of suspected data is desirable.

For convenience in evaluating data, it is highly desirable to tabulate the
points in order of time, with their residuals expressed both as "percentage
error' and as ""number of standard deviations, ' i.e., the weighted residual.
Whenever the magnitude of the weighted residual exceeds about 3, the point
should be examined further, since such a large deviation is highly unlikely to
occur through random error. If the weighted residual is unreasonably large,
but the percentage error is quite small (as often happens when a very large
number of events is recorded) then no appreciable improvement in the answer
is achieved by rejecting the point in question.

One is then led to the idea that a point should be rejected if: (1) The point
is separated from the ''true' calculated curve by more than about three of

its standard deviations; and (2) Omission of the point in question alters

4
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the final answer appreciably. The ''true' calculated curve may be estimated
from the curve calculated without the suspected point. A systematic check of
every point in a set of m points, then, will require a series of m + 1 least-
squares calculations - a very laborious task.

It is possible to approximate the same criterion by some far simpler
tests. One can estimate that a human error will cause a percentage deviation
of the observed point greater than a certain arbitrarily selected level, say-
5%; or alternatively one can decide that rejection of a single point in the set
which is within 5% of the computed curve (using all points) will not affect the
answer appreciably. One can then class all points with a percentage deviation
from the calculated curve of 5% or greater, and a weighted residual of 3 or
greater, as ''suspect."

Unfortunately, a simple scheme which rejects all such points, or even
rejects them one at a time starting with the point with the largest deviation,
proves in practice to have serious flaws ~ in fact, it retains bad points and
rejects good ones a fair fraction of the time. An additional criterion which
has been found to give good results in our laboratory is based on the following
approach: assume the existence of a set of '"good" data points with a calculated
curve passing through them. The deviations of the points from the curve will
be distributed, some positive and some negative, none very large, and more
or less at random. If now a '"bad" point is added to the data and the curve is
recomputed, the presence of the bad point will tend to displace the new com-
puted curve toward that point and away from the good points on either side.
The new curve will then pass between the good points and the bad one in the
region of the bad point. This gives us our additional criterion: for automatic
rejection, the deviation of the suspect point (suspect in the sense described
above) from the calculated curve must be in the opposite sense from the de-
viations of the points on either side of it; or if the suspect point is the first
or last point, its deviation must be in the opposite sense from that of the next
point to it.

This triple criterion has been in use in Livermore for some time and
has been applied to literally hundreds of sets of data. It has occasionally
caused unneeded rejection of a good point, usually when the bad point is the
second data point ~ in this case the first point is sometimes rejected also -

l

but if data are sufficiently redundant this usually does no harm.
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If there are suspect points in the data, and if the third criterion for
rejection is not met, one should examine the fit of the data to the calculated
curve. Often a systematic pattern will show up in the residuals, most easily
seen as a grouping of positive and negative residuals in clusters. This

grouping indicates an improper form for the function being fitted — the sample

is impure, or the wrong half-lives are being used.
If the analysis of the data is performed by a programmed computer, it !

is very desirable to obtain an output which presents the input parameters, the

results, a tabulation of points and their deviations, and the results of the XZ

test. A common complaint of those using least-squares analysis in an im-

proper manner is that any function can be fitted to any set of data by a least-

squares method; while this is undoubtedly true, it is easy to avoid gross

errors if one considers not only the answers so obtained but also their pre-

cision, the goodness of fit as given by XZ , and the pattern shown by the

residuals. Also, providing that suitable computing facilities are available,

a great deal of labor may be saved and a great many experiments protected

to some degree against subjective bias.

6. Avoidance of Computer Overflow

It occasionally happens that a multicomponent system has in it a short-
lived daughter of a longer-lived parent, and that the purification of the parent
species is performed some time after the time of interest. If the activity
measurement is carried out in such a way that the daugher component must
be included in the resolution, i.e., if the growth of the daughter is observed,
difficulties may arise in the analysis if precautions are not taken. The time
elapsed between zero-time and the time of measurement may be, and often is,
so large with respect to the daughter half-life that an attempt to evaluate the
necessary exponential functions will result in a computer overflow. This
problem can always be avoided by a substitution of a spurious zero-time,
conveniently taken as the time of the first count; the resolution can be per-
formed to give results as of that time and these results extrapolated back to the
true zero-time. No difference will be obtained in the answers by this method.
The advantage gained is that a separate exponential extrapolzation factor is
used for each component; the exponent can be evaluated and tested for magnitude
i before exponentiation, and one can refrain from extrapolating those components

whose exponents are too large. Such coefficients are without physical mean-

ing in any case.



Since extrapolation involves merely multiplying by a constant, the
actional precisions of the x; are not changed by this process. However, if
e is interested in the sensitivity of the X, to the input half-lives, the Q-
matrix (see equation V-20) as derived by this method will be changed by
extrapolation. Let

PNYAN S
y. T X.e ! (v.24)

“where Ot is the time between the true zero-time and the time of the first

count. Then

8yi 9x. )\iAt )\iAt
= .25
a)\j )\j e + 6ij(At)Xie (vV.25)

where 6ij has the usual meaning.

7. Analysis of Replicate Samples; Analysis of Variance

It is the usual practice to do replicate analyses on radiochemical
samples whenever possible. A set of replicates will, in general, give a set
of approximately equal answers; since the result of a radiochemical analysis
is subject to statistical imprecision, we would not expect replicate samples
to give identical answers except fortuitously. We must bear in mind also
that the statistical imprecision of a single radiochemical analysis, as esti-
mated from the least-squares solution, does not give a true picture of the
precision of the result; there are analytical variations possible which have a
systematic, rather than a random, effect on all measurements pérformed on
a single sample. Examples are: an error in the measurement of the aliquot
taken for analysis; an error in the measurement of the recovered yield; an
inhomogeneity in the mounted counting sample, resulting in a systematic
perturbation in the counting rate; an error in the amount of carrier added,;
and so on. We assume that these analytical variations have a random effect
on the answers from a set of replicate samples. It remains to develop a
technique for estimating the imprecision due to such variations from the
available data. It should also be noted that there are numerous systematic errors
which can distort the results of an entire set of replicates. Elimination of such
errors is a matter of careful experimental technique; no amount of data manipu-
lation can either detect or compensate for them.

Each replicate answer may be considered to be the expected value of a

Probability distribution function of known variance. These expected values
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do not all coincide. Furthermore, since these distribution functions are not
all of equal variance, their worths in establishing an overall 'best'" value
are not all equal. We desire to analyze the results of such replicate analyses
mathematically in order to make an estimate of the imprecision due to analyt-
ical technique. When this is available, one can then add the variance due to
analytical technique to the variance due to statistical fluctuations in the decay
data to get the total variance for each replicate; the reciprocal of this total
variance is then used as a weighting factor to average the replicate results,
and their variances, as before to give a best estimate of the true value for
the experiment and its variance.

The problem is analogous to one discussed by Da.vies9 in which a number
of analyses n; is }Z)erformed on each of k samples, the va;iance of an individ-
ual analysis is Ty and the variance between samples is oy - The numbers
n. are not necessarily equal between samples. It can be shown that, if xij

represents the result from the jth replicate analysis on the ith sample, the

quantity
n. n
e 1 2 k i 2 )
k| Z "4 Z Z "4
_ 1 j=1 i=1 j=1
. M= 3 ﬁ }, n, ) k ? (V.26)
i=1 h Z
n,
i
\ i=1 J
. . 2 2
is an estimate of 7 + ne, -, where
k k
YIS
n - n,
i i
7= il =2 : (V.27)
(k - 1) Z n,
i=1
Consequently, an estimate of cr]2 is given by
2 :
2 My -9 |
L Tl (v.28)

Owen L. Davies, Editor, Statistical Methods in Research and Production
(Hafner Publishing Co., N. Y., 1958), III Ed. (revised), pp. 134-136.
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variance croz; from Chapter III, equation III.51, var(xi) is given by

n.
i
X,
1)
X, = J=1
i n,
i
then
n.
i
x = n = T 2
ij ii~ var(zx) ‘0
Consequently,
e k
X,
i
- 2 k. 2 Z varzxii
1 k-1 ﬁ var(x.) k
i=] l
var(x.)
. i=] !
and
r k 2 k
z 1 ) Z 1
0'02 = varfxi) = [va.r(x.):'Z
o= i=1 i=] i
k- I§ k
]
\ i=1 !

and therefore, substituting in V.28 and simplifying,

~

In order to apply this result to our problem, we consider our various

.esults x, to be averages of undetermined numbers n, of analyses each with

(V.29)

(V.30) -

(vV.31)

(v.32)

(V.33)

(V.34)
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& varixli o [var(xi)]z

(V.35)

Note that var(xi) as used above refers only to the variance of the sample
due to fluctuations in the decay data; in order to average the replicate values

. 2
as was done in Chapter III, equations III.77 and 78, the estimate for Ty
should be added to each variance, so that for the best average value of k

replicates,

)

=] var(x ) + o']2
X = lk‘ (V.36)
Z var(x. ) + cr]Z
and
var(®) = — 1 . (V.37)

1
) 2
=1 var(xi) + Ty

A derivation of equation V.35 follows:

Let the results of our replicate analyses be given by X0 with each of

which is associated a variance var(xi) derived exclusively from counting

statistics. Var(xi) is then obtained from the least-squares resolution of the

decay curve of the ith sample. We assume that each X, is equivalent to an

. e . . 2
average of n, virtual individual results, each with the same variance oy -
Given any pair of virtual measurements, X, . and X, let their mean

be represented by plﬂ ; then an estimate of the variances ¢ 2 and ¢.¢ ma

0 1 Y
be obtained from this pair of measurements as follows:

If i=9¢, then o 2 is not estimated,

1 since the two samples are from the

same group.

If i=¢2 and j=m, no variance is estimated.
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Let the variance estimated from our pair be

2 ( 2
) (Xij - “ijfm) T\ ¥ym ” “ij/zm)

ijfm 2 -1 ’ (V.38)
and
2 2
~ - . + - . .
iigm (1-8,,. 6jm) o, (1 611) (V.39)
Substituting in V.39 for V.. _, given that
iJdm
Xij ¥ *tm
. = .40
M i4m > (V.40)
we get
1 2 _ 2 2
_Z-(Xij - x£m> = (1= 88, Jog + (18,07, (V.41)

Summing over all possible pairs to get the best estimate, we get

n

o}
o}

k 1 ? ki £
iy 4m 2
) Z E Z Z T %im) T %0 ZZ (1= 8558 m)
i=]1 j=114¢= lm=l i m

n, for ease of writing,

K

)

‘

Py

z (1- 5, (V.42)
m

K

)

I

k
which, after a little algebra, and letting N = Z n, =
i

gives
kM kM 2 Kk
- 2 ,.2 2 2 2
NZZ( )- zzxij ~ oy (N“-N)+ 0, N-Zni . (V.43)
i i i=1
2 . oy
Now T may be estimated within each sample by
nj
) sy =)
X.. - X
, ij i
2, Jj=1
i 0'0 ~ o - 1 ’ (V.44)




so that

Z (xij - xi)z ~(n, - 1)002. | (V.45)

j=1

Again summing over all samples to obtain the best estimate, we get

k 1 k
Z Z (xz\) - z n.x.‘2 = (N - k)o 2 (V.46)
1j 11 0 »
i=] j=1 i=1
which gives ‘
| ki k
| Z Z (x2> x z n.x.2 + (N - k)o 2. (vV.47)
ij i1 0
=1 j=1 i=1

Substituting this result into V.43 and rearranging, we get

k k 2
2 2
N z n.x.” - <Z nixi) - N(k - 1)0"0

° 2 i i
o, = T . (V.48)
N2 - Z r1.2
i
i

- If we now insert our definition of N and substitute for n, from equation

V.30, upon simplification we get the desired result, equation V.35. It will be
observed that the value of croz is indeterminate, as it must be since it rep-
resents the variance of a distribution of virtual objects postulated for

convenience.
A negative value of 012 signifies that, fortuitously, the replicate mea-

surements agree better than one would expect from their precision. This oc-
currence is analogous to a value of count variance less than its expected value,

as discussed on page 56; such a result merely implies that there is no clear
evidence for analytical variation, and therefore 012 should be given the value zero
in Equations V.36 and V.37, Frequent appearance of negative values of 012 in a
set of results indicates that errors of the input numbers are being improperly

assigned.



-101-~

VI. THE IDENTIFICATION OF COMPONENTS AND MEASUREMENT
OF HALF-LIVES OR DECAY CONSTANTS

Nature of the Problem

We have been operating on the assumption that the decay constants of
the components of our systems have been precisely known. While it is true
that the decay constant of a nuclear species is not a variate, in the sense that
it is not subject to variation due to sampling, nevertheless it must be realized
that the only method of evaluating a decay constant is by observing the process
of decay - which inevité.bly involves random statistical errors. In this sense,
then, a decay constant must be treated as a variate, although its value must
be considered fixed during any one resolution calculation — variation in \
makes a systematic, rather than a random, variation in the results of a
resolution. In this chapter we shall consider several different approaches to
the measurement of \ or its equivalent, the measurement of half-life, from
a set of data, together with the inseparable problem of the detection of the
number of components in the system.

It is of the utmost importance in measuring the half-life of a species to
make sure that the sample under examination is free of even the smallest
amount of radioactive impurities. A grossly impure sample is often easy to
identify; if the species involved are reasonably short-lived, the decay curve
will clearly show the presence of more than one component unless the half-
life of the impurity is similar to that of the species of interest. If, however,
the extent of contamination is slight, or the species involved are too long-
lived to decay to any great extent in a reasonable period, detection of an
impurity is more difficult. It can sometimes be accomplished by analysis of
the radiations from the sample; sometimes the only recourse is to observe
the specific activity of the sample as it is subjected to more and more rigorous
chemical purification. If the impurity is isotopic, it is necessary either to
use an isotope separator to prepare a pure sample, or to estimate the desired
half-life by a treatment of the data which takes account of the presence of
components other than the one of interest.

An example of the effect of an impurity on the measurement of a half-
life can be found in the early measurements of the half-life of Cd] 15 formed

from fission. The original reports on this nuclide assigned it a half-life of
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58 hours; when the existence of the isomeric state, with a half-life of 43 days,
was discovered, re-examination of the data resulted in a change to the current

best value for Cd'L> of 53 hours - a change of nearly 10%.

2. Single-Component System of Short or Moderate Half-Life

For simplicity, let us first consider a system which we are sure contains
only one component during the entire period covered by the data. The decay

of this system is given by

n= noe_)\t (VI.1)

which can be transformed into linear form by taking logarithms:
Inn =1n n, - At (VI.2)

If n is the observed counting rate, we may evaluate )\ graphically by
plotting In n against t and measuring the slope of the line; if semilogarithmic
paper is used, we may measure half-life as the time interval required for n
(not ln n) to decrease by a factor of 2.

A more precise and objective result is desirable. If a redundant amount
of data is available (i.e., more than two points) a least-squares solution can
b.e performed as described in Chapter III, Section 5, using the set of equations
VI.2 (one for each measured point). In order to weight the points properly we
need the variance of In n; if the data are fairly precise this may be obtained

approximately as follows:

var (In n) = var {ln [E(n)' + n - E(n)] , (VI.3a)
var (In n) = var (ln {E(n) [1 + nﬁé%n_)]}), (VI.3b)

n - E(n)

var (In n) = var {ln E(n) +lln[l + —E(E)—J} , (VI.3C')

var (In n) = var {lnl:l + 2%(@_)(11_)]} . (VI.3d)

n
. - E .
Since nE*(n@ 1s assumed to be small, we may expand the logarithm as

a series and neglect all powers of n—i_;(%)(—g)- above the first, so that
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var (In n) ® var [n_E;(—r%—(-n—)j' , (VI.3e)
var (In n) = var [E%) - 1] = var [-E%T} , (VI.31)

var(n)

e

We then have the proper weighting factors to permit a least-squares

var (In n) = (VI.4)

analysis of the data for the parameters 1n n, and \. If a matrix solution is
used we have an objective evaluation of var (\), as described in Chapter III,
equations II1.92d, 104f, 130, and 142g; it is the proper diagonal element of
the inverse matrix, multiplied by XZ/(m—2) where this factor is greater

than unity.

3. Single-Component System with Long Half-Life

If the half-life of the species under examination is so long that an ex-
periment to observe the decay of a sample is difficult, another method must
be used. There are three methods in general use. The simplest method
depends on a direct measurement of specific activity; the second and more
-elaborate method depends on a careful comparison of the decay of the unknown
species with that of a species of precisely known half-life; the third method
depends on an internally calibrated method of observing decay over long
periods of time.

Measurement of half-life by specific activity depends on the differential

form of the fundamental law of radioactivity (equation II.1) which is

% = \n (VI.5)

where n is the number of atoms present and -dn/dt is the disintegration
rate. Direct application of this formulation of the law requires two difficult
measurements: an absolute measurement of the disintegration rate of the
sample, corrected for solid angle, counter efficiency, and sample absorption
and scattering effects; and a measurement of the number of atoms in the
sample. With the improvement in absolute counting techniques, and the in-
Creasing sensitivity of analytical instrumentation such as the mass spectrom-
eter for measurement of n, this method is becoming more precise, but still

requires great care. An example of the method, which gives some indications
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S

of the care which must be used, will be found in Fleming, Ghiorso, and
Cunningham's articlelo on the half-life of uranium. A similar measurement
was carried out at Harwell11 to give the half-life of Cs]37.

A technique which has been used by several workers“’]2 depends on
the fact that two ionization chambers carefully made to be mechanically as
nearly identical as possible will have nearly identical responses. A sample
whose half-life is to be determined is placed in one chamber, and a very long-
lived standard sample in the other. The two chambers are then connected to
a sensitive current measuring device, e. g-, an electrometer tube, in such a
way that the difference in current between the two chambers may be measured.
This difference is balanced to zero at the time to and its change with time is

noted. It will be seen that the "difference current" Id will have the form

Ae-t,)
1d=10[1 - e . (VI.6)

If the experimental sample is removed from its chamber, the ""difference

current'" observed with the standard sample compared to an empty chamber

will be a measure of IO. We then have
Id
- 1In == = =A(t - t.). (VI.7)
IO 0

In practice, in particular if the decay of the sample is appreciably rapid,
the exact time tO may be inconvenient to obtain; one may equally well select
an arbitrary time ta (near the time at which the chambers are exactly

balanced, for convenience). Then let

I
- d) _
X = ln(l - ¥> = -\(t - ta + ta - to), (VI.8a)
X = Mta - to) -a(t - ta). (VI.8b)

]OE. H. Fleming, Jr., A. Ghiorso, and B. B. Cunningham, Phys. Rev.

88, 642 (1952).
""F. Brown, G. R. Hall, and D. N. Walter, J. Inorg. Nucl. Chem. 1,
241 (1955). =

12E. Segrt and C. E. Wiegand, Phys. Rev. 75, 39 (1949).
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We may plot X against (t - ta) and obtain X\ from the slope of the line, or

for greater precision evaluate that slope by a least-squares method. Tobailern13

60

obtained the half-life of Co (5.27 years) to 1.3% in a series of measurements

27

2
lasting only 32 days, and the half-life of Ac (21.6 years) to 2% in a series

of measurements lasting only 137 days.
If the standard sample decays'appreciably‘ during the course of the

measurement, and if its half-life is precisely known, then one inserts

| haleto)
0 0’

have a good estimate for to; this necessity becomes less urgent as the half-

into equation VI.7 in place of I In this case it is necessary to
life of the standard becomes larger.

A self-calibrating method for measuring long-lived decays has been
applied to the measurement of the half-life of. Kr85(ref. 14) and of Cs]37
(ref. 15). The change in the ratio of Kr85/Kr86 in a gas sample, or
Csl37/Cs135 in a fission-product cesium sample, can be followed for long
times, since the fact that a ratio is measured is insurance against instrumental

drift.

4. Multicomponent Systems — Detection

Given a sample or set of data about which no information (other than
statistical reliability) is available, the first question which comes to mind is;
is the system a single-component system, or is it not?

The simplest approach is to plot the data on semilogarithmic paper,
log(n) vs t as before; multicomponent systems will usually give curved lines
if the data are well enough distributed in time. If, however, the data do not
cover at least two or three half-lives of the apparent principal component,
an erroneous conclusion will often be drawn. (See Fig. VI.1.)

A more sensitive test may be applied by performing a least-squares
analysis on the data, using the apparent half-life; if two components are
actually present, a systematic pattern of deviations will appear, and the thest

will indicate a poor fit.

1337, Tobailem, J. Phys. Radium 16, 48 (1955).
]4R. N. Wonless and H. G. Thode, Can. J. Phys. 31, 517 (1953).
15

C. G. Campbell, private communication, cited in F. Brown and G. R.
Hall, Nuovo Cimento Suppl. (Ser. 10) 6, 283 (1957).
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COUNTING RATE (LOGARITHMIC SCALE)
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TIME GLL-646-15Tk

Fig. VI.1. Decay curve of a two-component system, with equal amounts of
two species whose half-lives differ by a factor of 1.5. Deviation from a single-
component decay curve of intermediate half-life (dashed curve) is barely per-

ceptible. This illustrates the difficulty of resolving two species with similar
half-lives.
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A still more sensitive method for detecting the presence of more than
one species is based on differential counting. If the gamma spectrum of the
sample is followed as a function of time, its shape may often be seen to change
with time; a simpler way of accomplishing the same objective is to follow the
decay of the sample on both beta and gamma detectors or through various
thicknesses of absorbing material. If the sample contains more than one
component, the counting rates under different conditions will not all show the
same time-dependence; indeed, if the counting conditions can be made suffi-
ciently selective, it is sometimes possible to observe the decay of one or
more species essentially pure. In this fortunate case, a good estimate of
the half-lives of such species can be obtained. In any case, if the presence
of more than cne component is suspected, counting should be continued until
the activity of the sample has decayed to a small fraction of the original
activity if possible.

When there are two or more long-lived compcnents it is not practical
to follow the decay of the sample through many half-lives; if the components
are not isotopic it is frequently possible to distinguish between them by care-
ful chemical separations. If they are isotopic, the use of a mass-separator

. should be considered.

5. Known Multicomponent Systems — Evaluation of X\

If we are dealing with a system which is known to contain certain com-
ponents, and only those components, the evaluation of the \ is possible by
several different methods. One usually has approximate values for the \,
which may be obtained graphically as described in Chapter II, Section 2; these
approximate values may then be improved by calculation. A direct solution
in the manner of Chapter III is not possible, since the forms of the equations
are not linear if the X\ are treated as unknowns; if, however, Ai (the true )\i)
are considered to differ from the approximate )\i by a small amount €., so

that

A=\, + ¢. (V1.9)

then we can say that

P

At - vtRet) At -et
e "l=e M) Ml Ml 1) (VI.10)
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ALt -)\it.
e a1 - egty)e J, (VI.11)
and in each datum equation,
-ALt. - Nt R
xe ‘J=xce Jo(xe) te M, (VI.12)
i i ii j

We therefore replace each unknown X with a pair of unknowns, X, and ¢ Xy
and solve as for a system with twice the number of components.* The €. are
evaluated by division of the €; X5 by the X5 the original values of the )‘i are
corrected by adding the €5 and the process repeated. If the initial values of
the )‘i are sufficiently close to the true values so that equation VI.11 is a good
approximation, the iterations will usually converge and the calculated values
of the € will approach zero. '

This technique is laborious at best, and beset with difficulties; if the
original values of the X are not sufficiently good, the iteration will diverge
instead of converging. It is also possible to ""overshoot' the true value of
the A\ and encounter a situation where the successive values of a given €
oscillate about zero without decreasing.

Another approach is to consider the value of XZ and its dependence on
the \, as derived in Chapter V, equation V.23. If XZ is greater than its
expected valﬁe, one may make the approximation that the deviation of XZ from

its expected value is

oN. 1

n
2
o (%) = z 00X ) .y, (VI.13)
1

i=]

. . 2 .
and select a set of Axi which will reduce y to a minimum value. Any
systematic scheme for selecting such a set may be used.
. . s 2 .
A simple scheme is to assume that the deviation of x from its expected

value is due to equal contributions from each X, so that we select

an = D)

h a(x ")
N
1

(VI.14)

n

" The coefficients of the (eixi)unknowns inthe least-squares solution method

are of course tje 1) rather than simple exponential expressions.
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Another simple scheme is to assume that each \ is in error by a fixed per-
centage, so that

2
)\iA (X )

B = — . (VI.15)

i=1
Still another scheme is to weight the change in each Ny by the magnitude of
. 2 .
the sensitivity of XZ to that Ao i.e., to change those )\i to which y = is most

sensitive; this gives

.
AN, = —0t . (VI.16)
1 n 2
E: a(x")
N,

i=] '

Of these schemes, VI.16 is probably better than VI.15 which is better than
VI.14.

If any of the \'s of the system are known precisely, these should not be
varied in the iteration scheme. This situation may occur when it is desired
to identify an impurity which is observed in a sample containing known

components,

6. Unknown Multicomponent Systems

If nothing more is known about the sample than the raw data, consisting
of a set of counting rates (and their variances) measured at various known
times, the problem of resolution is in the general case extremely difficult.
Two general methods of apprcach have been proposed.

The first method, which has occasionally been used,16 is a '""brute
force' method in which one assumes inturnn, n+ 1, n+ 2, ... components,
evaluates their half-lives by an iterative procedure based on initially assumed
values as outlined in the previous section, and then tests, each time, the
statistical improvement in the fit to the data resulting from the addition of the
latest component. When the improvement upon adding an additional component
is no longer significant, one concludes that the latest added component is

spurious and that the system was completely and correctly resolved in the

]6Keepin, Wimett, and Ziegler, J. Nucl. Energy 6, 1 (1957).
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previous attempt. It goes without saying that such a method is extremely
laborious; it is also somewhat liable to mistake two components with similar
half-lives for a single component. The mathematical details of the method
are discussed by Householder. 17

A more elaborate method has been described by Gardner et al.18 Their

method is based on integral transforms. In brief, they attempt to determine
a function g(\) which is a sum of delta functions, each multiplied by an ap-

propriate amplitude; then if the activity of the sample is represented by f(t),

o0
£(t) = So g )e ™ an. (V1. 17)

By a suitable transformation of variables,this equation is converted to
the complex plane; f(t) then assumes the form of a Fourier transform of g(\).
By appropriate integrations, the inverse transformation can be performed and
a plot of g(\) vs N is produced. (See Fig. VI.2.)

This method has the great advantage that the number of components
appears as one result of the analysis. The actual plot is expected to resemble
a spectrum, with a peak at each value of \ corresponding to a component.
.The area of the peak is related to the abundance of the component. In actual
practice, the situation is more complicated; one usually does not possess
data which can be integrated to infinite time, and integration of numerical
data is subject to errors. Both these effects contribute to the appearance of
numerous small peaks, or "error ripples,' which greatly confuse the spectrum.

Many problems remain to be solved in the actual application of the method.

VII. DEAD TIME AND COINCIDENCE CONSIDERATIONS

1. Nature of the Problems

Certain statistical problems arise from the physical limitations of the
counting equipment itself. In general a single radiation event is detected by
some physical system which is in a metastable state - a phototube with a
potential across the electrodes, for example, or a wire at high potential in a

gas. The event 'triggers' the transition of this metastable state to a state

174, s. Householder, ORNL-455 (Unclassified).

]8D. G. Gardner, J. C. Gardner, G. Laush, and W. W. Meinke, J. Chem.

Phys. 31, 978 (1959).
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Fig. VI.2. Result of the method of Gardner et al. applied to a set of syn-
thetic data having four components. The four prominent peaks (numbered
1-4) represent components; minor error ripples about the zero-line are in-
herent in the method. The large ripple at the right-hand end represents
failure to obtain data out to infinite time. (Reproduced from Gardner et al. )
J. Chem. Phys. 31, 978 (1959), Fig. 6, p. 983.)
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of lower potential energy, and the energy liberated in the transition is recorded,
The system is then returned to its metastable state to await the next event. Z
This process takes time; while the system is reacting to an event it is not
capable of reacting to a second event. Two events occurring within a certain
time, then, will be recorded as one event; if the system responds in a manner
proportional to the energy of the arriving radiations, two events occurring
within the critical time will record as a single event having the total energy
of the two events. For counting circuits, this critical time is usually spoken
of as the ''dead time''; for coincidence circuitry, as the "resolving time."

In this chapter we shall examine the effect of the dead time on the ob-
served counting rate; the effect of scaling circuits on interval between pulses
into a mechanical register; the mezsuring of true coincidences vs fortuitous
coincidences; determination of counting efficiency by coincidence methods;
and the effect of coincident events on energy-discriminated counting circuits.

-

2. Effect of Dead Time on Observed Counting Rate

Rainwater and Wu8 have discussed tweo limiting situations. In one, a
pulse in the counter causes it to be insensitive for a2 time T, a second event
* arriving during this time does not record and deces not extend the dead time.
In the second case, a second event arriving during the dead time does extend
the dead time to a time T after the arrival of the seccnd (undetected) event.
Let us consider the first situation. Let the "true' counting rate be
N per unit time and the measured counting rate te n per unit time. Then
since each recorded count implies a dead time of 7, which is not affected by
the unrecorded events, the total time lost pPer unit time is n7t. The number of

events occurring during this lost time is Nn7, so that
N - n = Nnr. (VIZ. 1)

Consequently, for known dead time,

- n -
N T (Vii.2)

is fitted to

=\ _t.
TN
y

y
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Since

N

L N (VIL.3)

it can be seen that the maximum counting rate in this type of instrument, as
N increases without limit, is 1/7.

In the second case, where the dead time is extended by T for each
event, whether recorded or not, the analysis is slightly more elaborate. One
can see that a second count will be recorded only if it follows the first count
by a time interval greater than 7. We must consider the probability that the
interval between events, arriving at a rate N per unit time, is at least as
great as T.

The expected number of events during an interval 7 is Nt. If Poisson
statistics applies, the probability that the actual number is zero, that is,

that a second event does not arrive within a time T, is given by

L 3

0 -NT
Po(n) = LM%-,——e—— = e-NT. (VII.4)

Consequently, the fraction of the time that the counter is ''live" is
e—NT; the observed counting rate will be

n=Ne N, (VIL.5)

which for small values of N7 is approximately equivalent to equation VII.3.
For large values of N7, n in equation VII.5 goes to zero - the counter is
'"blocked" or saturated. The maximum counting rate can be seen to occur
at N7 = 1, where n is equal to 1/7e.

In actual practice, the observed behavior of a system is usually inter-
mediate between the two extremes. Unless a great deal of effort is expended
on checking the behavior of the system at high count rates, it is unwise to
operate in a region where N7 is appreciable compared to 1, even if the ''dead
time'' is reputedly known, since when equation VII.5 diverges appreciably
from equation VII.3, it is not certain what the actual correction should be

unless the actual behavior of the system has been carefully examined.
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3. Measurement of Dead Time

There are several general methods of measuring counter dead time.
The simplest method (in principle) involves the preparation of a series of
long-lived standard samples whose counting rates relative to each other
are known a priori; the observed ratios between counting rates are then used

with equation VII.2 to give the dead time. Since

i N, = | (VII.6a)
i 1 1 - n1 T
§
o nZ
N, = ——, (VIIL.6Db)
2 1 - n, T

i ! then combining these two equations and solving for T,

.: __m/mp - NN, np/ng - N/N, (VL)
\ n](l - Nl/NZT n, (1 - NZ/NI)

A set of suitable samples may be prepared by pipetting various carefully
i measured aliquots of a suitable tracer onto identical backings, making sure
* that the size and location (on the backing) of each spot is identical with all the

others, and that the amount of solid material present is constant. If the

Tt sl T

samples are not identical in all respects, errors in positioning within the
counter and nonidentity of sample scattering and absorption on the various
samples will perturb the result. It should be noted that, since evaluation of

| dead time by a relationship like equation VII.2 is only valid for Nt <<1, we

are attempting to measure a small deviation from ideal behavior; such a

pi measurement is equivalent to measuring a small difference between large
numbers, which (refer to Theorem IV, Chapter III) is subject to large variance

. if the numbers are statistically independent, as they are in this case.

Another common technique based on the same approach involves the

Bt preparation of a divided sample, so mounted that either portion may be

inserted in the counter, or both may be inserted together without either por-
tion interfering with the other. If n, is the observed counting rate from one

,; portion, n, is the observed counting rate for the other, and ns is the observed

counting rate for both samples together, we have for the true counting rates

1 G
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N, & ————, (VII.8a)

NZ T — (VII.8b)

712
].\I]2 = _]»——'TZT = N]. + NZ. (VII.SC)

Substituting VII.8a and b into VII.8c, we get

n n

n
l-r]12'r:l-ln'r+]—i'r (VIL.9)
12 1 2
which upon simplifying and solving gives
nynp # Jnlnl(nlz “ )Ry - my)
T = ) . (VII.10)
P12

It can be shown that choice of the upper sign will result in a negative

answer for N. or NZ; consequently we have

]

n.n, - fnn,(n., -n)n,, - n,)
I Jrrale ), - my 12 ~ ") (VIL11)
n.n,n

172712

This technique appears simple in theory; in practice, extreme care
must be used to ensure that each portion of the split sample is counted sepa-
rately in exactly the same position it occupies when the portions are counted .
together. The term under the radical sign does not differ greatly from nyn,;
we are again faced with a small difference between large numbers. Repeated
measurements should be made with different sets of split samples; counts
should be taken with high precision, recording as many events as possible
during each of the three measurements.

A second method for measuring dead time involves the preparation of a
strong sample of a short-lived single species whose half-life is very well
known. (Cll, with a half-life 0f'20.5 minutes, is a convenient species for the
purpose.) If the initial activity of the sample is high enough so that dead
time losses are appreciable, then the activity will not decay exponentially
with time; if n is the observed counting rate, and the true counting rate

decays as a single-component exponential, then



n, = (VIL. 12)

1+ No’re

and if enough points are available the parameters N and T can be evaluated
either by a least-squares method or graphically.

A simple graphical approach to give an approximate answer may be
derived by reciprocating equation VII.12 to give

] 1 +)‘ti
L + 7. (VII.13)
n. N
i 0
If l/ni is plotted against exp (+)\ti) a straight line should be obtained
with a slope of ]/NO and an intercept of 7. The same form of the equation
can readily be used for a least-squares solution, providing that the variances

of the l/ni can be derived. This is done as follows: rewriting VII.13 as

1 1
-I’T = —N— + 7, (VII].4')
i i
then
1 1 1 Ni
var{ — | = var({=——|] = var (N,) = ——— , (VII.15)
<ni> <Ni) N2 VoA N2
i i i
N N (VIL. 16)
var n. - N. - Ati’ '
i i

where At; is the counting interval (see Chapter V, equation V.7). Unfortunately,
Ni involves the parameter T; we are again involved in an iterative calculation,
where a first approximation for 7 is obtained in some reasonable fashion; the
weighting factors for the least-squares solution are computed, using this
initial value; a new value for 7 is obtained by least-squares analysis; if this
value is appreciably different from the initial value, the new value of T is
used to recompute improved weighting factors and the procedure is repeated
until the value of T converges to its best value. Since l/ni is expected to be
considerably greater than 7 if the simple concept of dead time is to have
meaning, the convergence should be quite rapid.

One may also estimate dead time by electronic methods; if the output of

the counter is used to trigger the timed sweep of an oscilloscope, and the
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counter pulse is displayed vertically on the scope, then if a highly active
source is put into the counter the scope screen will display a pattern like that
in Fig. VII.1 (in the ideal case). In Fig. VII.1 the first pulse is displayed at
the left end of the scope trace; pulses which follow during the sweep of the
scope will appear at random at any point of the sweep after termination of the
dead time. If a large number of sweep patterns are superposed, as for ex-
ample by taking a time-exposure photograph of a number of sweeps, the dead
time may be measured by the width of the gap between the first pulse and the
earliest second pulse. T is sometimes a function of pulse height.

Electronic circuits are becoming available which measure counting time
intervals in terms of ''live time.'" When such equipment is available, or
where the dead time is so short or the counting rate so low that dead time

losses are negligible, much trouble may be avoided.

4. Scaling Circuits — Avoiding Losses in Slow Components

If the counting instrument embodies a mechanical register or other
slow-acting component (very few mechanical registers will accept pulses
separated by only 0.] second) serious trouble may arise. Even when the av-
erage interval between pulses is long enough to permit response of the regis-
ter, the statistical distribution in time of the pulses implies that a certain
fraction of the pulses will occur too close together to be resolved. It is
customary to use an electronic scaling circuit between the counter and the
register, so that for every m events in the counter only one pulse is fed to
the register. This obviously reduces the register counting rate, and increases
the average interval between pulses, by a factor of m; we shall show, follow-
ing the treatment of Rainwater and Wu, 8 that there is an additicnal beneficial

effect gained from the regularizing action of such a scaling circuit on the

output pulse rate. In other words, the distribution of intervals between out-
put pulses from a scale-of-m circuit is narrower than that from a counter
counting at the same rate, i.e., with the same average spacing between
pulses. This implies that a given register might be satisfactory, used with a
counting rate of mN and a scale-of-m circuit, even though the losses due to
slow register response would be unacceptable if the same register were used
with a counting rate of N and no scaling circuit.

We wish to consider the probability qm(x) dx that the actual interval

between two output pulses from the scaling circuit lies between x and x + dx,
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Fig. VII. 1. Schematic representation of the measurement of counter dead
time 7 using an oscilloscope. Pulses from the counter are used to trigger
the horizontal sweep of the oscilloscope. Events which occur within the
sweep time appear as peaks in the right-hand portion of the trace. Repeated
traces are recorded, e.g. by a long-exposure photograph; counter dead time
results in a blank region in which no record pulses appear.
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where x is time measured in units of the average spacing between output
pulses, i.e., if the output pulse rate is N, and the input pulse rate is mN,
then for a time t, x is equal to Nt. We shall start by considering the proba-
bility Qm(x) that an output pulse will occur within a time t of the preceding
output pulse.

During the time interval t the scaling circuit will receive some number
n of input counts. Let us assume that Poisson statistics applies; then the

probability of n input counts is given by

m)n e-E(n)

Pn = o (VILI.17)
and the expected number of counts is
E(n) =mNt = mx. (VII.18)

An output pulse will have been obtained if n > m. Consequently the

probability of obtaining an output pulse is the sum of all Pn for n > m; or

0 m-]
. Qm(x) = Z Pn(mx) =1 - Z Pn(mx). (VII.19)
n=m n=0

The probability that an output pulse will occur during the interval be-
tween x and x + dx is the change in Qm(x) when x increases from x to

x + dx; in other words

_ d
qm(x) c I [:Qm(x)j]. (VII.20)
Substituting equations VII.17 and VII.18 in equation VII.19, we get
m- ] n_-mx
d mx) e ,

R PR —_—

m=0

(mx)m-l o TIX

q_(x) =m (VII.22)

m - (m -1)1
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If this 1s written

e = (mx)m—le—mx VIL2
qm(x) X = m - 17 d(mx) ( .23)

it is apparent that it corresponds to the form of a Poisson distribution, with
an expected value of mx equal to m - 1 + 1 = m, so that E(x) = 1 as might be
expected; the point of principal interest is that the width of this distribution,

as measured by its variance, is also m; so that

var(mx) = m2 var(x) = m, (VIIL.24)

var(x) =Lm , (VII.25)

and the width of the distribution in x varies inversely as m. Figure VII.2
shows the shapes of the distributions for several values of m, including m =1
(no scaling). The curves are normalized so that the area under the curve for

x < x, is the probability that the interval between consecutive output pulses

1

is x £ % The very small areas under the curves for small values of x

E
when a scaling circuit is used should be compared to the large area under the
curve for m = 1, i.e., no scaling; this clearly demonstrates the advantage

to be gained by the use of even small scaling factors.

5. Measurement of Coincident Events

It is sometimes desired to measure events which are ''coincident' in
the sense that they occur, one in each of two counters, within a certain time
of each other. It is of course meaningless to require that the two events occur
at precisely the same instant; the uncertainty principle alone implies a certain
imprecision in the time of occurrence of events of finite energy. In addition,
any real physical instrument for measuring coincident events has a finite
resolving time 7T; events occurring within a time T of each other will be re-
corded as coincident.

Events measured as coincident may be divided into two classes: ''truly
coincident'' events which are related in some physical way, such as two gamma
photons emitted in cascade without noticeable delay in the intermediate state;

and '"chance coincident'" events, which arrive together at the detection system

within the time T through pure chance. Fortunately, it is possible to calculate

the rate at which chance coincident events will occur; the gross rate of

!
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0.5

q(x)=mP_ _ (mx}—=
o
|
3
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O l.O 2.0 30

X — GLL-646-1577

Fig. VII.2. Regularizing action of scaling circuits. q(x) dx represents the
probability that the time interval between two pulses to the register will lie
between x and x + dx, where x is a fraction of the mean interval. The proba-
bility that the interval will be less than the dead time, a, of the register is

represented by the area under the curve from x = 0 to x =

= = a; m is the scaling
factor in the scaling circuit. It can readily be seen that even rather small

scaling factors are very helpful in reducing losses. (Reproduced from
Rainwater and Wu, Nucleonics, Octobér 1947, p. 60; Fig. 3, p. 69.)
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coincident events can then be corrected to give the true coincidence rate. The
calculation is made as follows: Let us assume that, as is almost always true,
the true coincidence counting rate is very small compared to the counting rate
in either counter. If the counting rate in one counter is nl, and the counting
rate in the second counter is n,, then the probability of a count in one counter
during the interval 7 is proportional to both n, and T; it is, in fact, n,T . The
usual circuit for coincidence measurements is so arranged that a coincidence
will be recorded if a count in counter 2 follows a count in counter ] within an
interval T, but not the reverse; in such a case, the chance coincidence rate
will be nyn,T. If n, and n, are recorded and T is known, the chance coinci-
dence rate can readily be calculated.

In planning an experiment it is desirable to make an estimate of the ratio
of true to chance coincidences. For this we need an estimate of the counting
efficiency of each counter. If the true disintegration rate is N, and the
efficiencies in each counter are 7n; and m, where efficiency in this case is
taken to include branching ratios, decay schemes, and selective counting
response, then the true coincidence rate can be seen to be n'ln 2N and the
chance coincidence rate can be seen to be nanNZ—r. The ratio of ''true'' to
"chance'' coincidences will then be 1/N7. It is therefore desirable to operate
with as short a resolving time as possible, which seems obvious a priori;
what is not so obvious is that it is also advantageous from the point of dis-
criminating against false coincidences to operate with a sample containing as
little activity as possible.

If this is done, it then becomes highly desirable to increase the solid
angle intercepted by the counters to the largest possible value so that the
observed gross counting rate will be as high as possible, in order to obtain
good statistical reliability in a reasonable experimental period. We are now
in some danger of violating our simplifying assumption; if we consider a limit-
ing case in which every count in the first counter gives rise to a true coincident
count in the second counter, it is obvious that while TR N, is not zero the
actual false coincidence rate is truly zero.

The evaluation of true versus false coincident counts is somewhat more
complicated if we omit the simplifying assumption. Let us assume a ''true
12 then there will be n, counts per unit time
in both counters 1 and 2 which should not be included in the evaluation of the

coincident' counting rate of n
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false rate. If g is the gross observed coincident count rate, and f is the

false coincident rate, then
g=1f+ n, (VII. 26)
and

f= (nl - n]Z)(n2 - nlz)'r (VII.27)

so that, combining VII.26 and VIL.27,

2
T(n +n)-1+f[l—7‘(n +n)]+47(g-7nn)
n, = 1 2 - 12 L2 (vI.28)

This can be transformed to

l-7(n.+n,)]}| 47(g - Tn.n
n12=[ 27] 2:’ -1+/1+ 1%2) - (VII.29)
[l - (n +ny)]

which can be approximated by

g - Tnln2 47(g - TN,
Ny~ 7 'r(nl T nz) as [1 T ) ] 5 becomes << 1.
1 2 (VII.30)
Since for any reasonable system 'r(n] + nz) << 1, then the simplifying assump-

tion does not give rise to serious error unless 47n

to 1.

12 is appreciable compared

6. Variance of Coincident Event Rate

If one considers a system such as the above, but containing a sample of
such a nature that there are no true coincidences, then it becomes apparent
that the gross coincidence count rate observed must be the actual false rate;
that the expected value of the difference between the observed gross rate and
the calculated false rate is zero; and that the variance of the difference between
the gross and the calculated false rates is just the variance of the false co-
incidence rate. This variance can be computed from theory.

Since we know that the expected value of the false rate, f, is given (to

a good approximation) by
f=17nm,, (VIL.31)

then
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n, +n
var (f) = '7"2 var(nlnz) = Tznlnz <1—t—2) (VIIL.32)

where t is the duration of the count (see Chapter V, equation V.7). Since for

true coincidences Poisson statistics should apply,

712
Var(nlz) =4 if f = 0; (VIL.33)

then from the preceding discussion

n. +n
var(nlz) = gt- f + ’7'2n1n‘2 <—1t—2> . (VII. 34)

This variance is then used for least-squares weighting.

7. The Effect of Coincident Events on Discriminated Counts

. Several varieties of counters may be made to give an output pulse with
amplitude nearly proportioned to the energy of the evént giving rise to the
pulse. Such counters, in conjunction with suitable discriminating or analyzing
circuits, may be used to give particle energy spectra, or to count radiations
of a particular energy in the presence of a variety of others. In this situation
coincident events may occur in which two particles enter the counter within
the resolving time of the system; the amplitude of the resulting pulse is then
proportional to the sum of the energies of the two particles.

When one is examining a sample which gives rise to a pair of truly
coincident events - for example, two gamma photons in cascade — then if the
probability of one event recording in the counter is Pys and the probability of
the other recording in the counter is P, the probability of both events record-
ing in the counter is PP,- Consequently, the ratio of coincident events, giving
rise to a '"sum'' peak with energy El t E,, to single events of one type (e.g.,
type 1) will be

P1Pp P2

Sums/single = = = op.. VII. 35
TS e, TTe, TP ( )

P, and P, are simply the counting efficiencies of the system for the types of
radiation in question; consequently, for a given decay rate, P, is proportional
to the singles counting rate of the second type of event. Typical counting
efficiencies are > 1073 in most cases and may even approach unity in special

arrangements.
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Let us now consider a sample which does not give rise to truly coinci-
dent events, in a system with resolving time 7. The relationship between
count rates for single events and count rate for false coincidences is the same
as that derived in the previous section; the ratio between ''false sums'' and
singles of type 1 will be

nanT
Sums/singles = ———— = n,7 = p,Nr (VII.36)

1
(where N 1is the disintegration rate), which is again proportional to the count
rate of the other type of event. In this case the two types of events may be
photons of different energy originating from different atoms, giving rise to
a '""sum peak'' of energy E] + E,, or photons of the same energy, giving rise
to a '"'sum peak' of energy ZEI’ in which case NZ and N1 are equal. It will
be seen that there are differences between true and false sum peaks. The
size of the proportionality factor is larger in general for true coincidences;
but much more imporFant is the fact that P, depends only on solid angle,
counter characteristics, and to a slight extent on sample mounting, so that
the ratio of sums to singles in a particular counting arrangement depends only
on counting position, i.e., solid angle, for true coincidences, but depends on
absolute disintegration rate for false coincidences. The sums-to-singles ratio
will therefore change with time as the sample decays and the absolute disinte-
gration rate changes.

A point that should be made is that a nuclear species which has two
gamma photons in coincidence may actually have a single gamma photon whose
energy is the sum of the two coincident gammas; the decay scheme for such a
species is drawn in Fig. VII.3. The gamma spectrum of such a species will
contain a peak of energy El + EZ which will arise from three sources: single
events corresponding to the ''crossover' transition from the upper level to
the ground state; true coincident counts of the two gammas in cascade; and
false coincidences resulting when one of the cascade gammas strikes the
counter in fortuitous coincidence with the cascade gamma of complementary
energy from another nucleus. In attempting to demonstrate the real existence
of the '"'crossover' transition, and to measure its abundance, due allowance
must be made for contributions to the gamma peak from the other sources.

It should also be noted that a multicomponent sample is sometimes

followed for decay in a proportional counter with a discriminator set to block

J—
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\ E,+E,

"CROSSOVER"

GLL-646-1578

Fig. VII.3. Decay scheme illustrating a possible difficulty in interpreting
"'sum peaks'' in gamma spectra. A peak will appear in the spectrum of such
a nuclide at the gamma energy E. + E,. This arises from three sources: a
true coincidence' when the photdns Y, and vy, both strike the crystal; a
""crossover' when the nuclide decays directly %rom the upper excited state
to the ground state; and a ''false coincidence'" when a photon of energy E
from one nucleus and a photon of energy E, from another both strike the
crystal fortuitously within the resolving time of the instrument. The inten-
sity of the "'sum peak'" will vary with solid angle and with absolute source
intensity in different ways for the three different phenomena.
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off a component which gives rise only to relatively low-energy radiations,
while recording the higher energy radiations from another component. If
there are true coincidences in the undesired species, the ''sum peak'' may lie
above the discriminator level and the unwanted component will appear in the
decay curve. If there are no coincident events, but the unwanted component
is sufficiently active to give an appreciable number of false coincidences, it
will easily be seen that the false coincident rate will depend on the square of
the count rate; the decay rate for the false sum peak will be given by

A\t 2 2 22t
e

R OC(ROe ) = RO (VIL. 37)

and a component will appear in the decay having precisely half the half-life of
the supposedly eliminated species. This effect can be quite startling if not

anticipated.

8. Measurement of Absolute Counting Efficiency by Coincidence Techniques

If one has a radioactive species which gives rise to truly coincident
events, measured in an experimental arrangement of two counters, it is
possible to use the coincidence counting rate to measure the true disintegra-
Eion rate of the sample. If the counting efficiencies in the two counters,
including solid angle and branching ratio if necessary, are ny and upy then

the counting rates are given by

nl =n]N,

nz = nZN, (VII. 38)

n, = n]qu + Tnn, (gross coincidence rate),

1
and consequently

n,n,
N = . (VII. 39)
n,, - 7om,

It is of some interest to consider the precision of such a measurement.

We have seen (equation VII.34) that
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2
var(n oy s n, -Tnmn, . T nn, (n1 + nz)
12 172

- - (V1I.40)

i and consequently, using Theorems V and VI of Chapter III, we get, where

t is the duration of the measurement,

2
. ] n o, ‘ 1 1 ] T nyn,(n) +n,)
“;“i Var(N) = - o —_— H—— + o T non + 5
b 12 2 1 2 12 172 (n12 - 'rnlnz)

(VIL.41)

s
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VIII. GLOSSARY OF SYMBOLS

determinant of the matrix A

inverse of the matrix A

transpnse of the matrix A

element of the matrix A

coefficient in a system of linear equations
total number of background events
matrices

covariance of two variates x and y
diagonal matrix

expected value of a variate x

expected value of a function of a variate x
false coincidence rate

extrapolation factor

growth factor; gross counting rate, events/unit time; right
member vector of the normal equations; gross number of events;
gross observed coincidence rate

function used to resolve unknown mixtures (see p. 107)

vector of right member of normal equations; gross number of
events

vector with unit components

unit matrix

number of replicate samples or measurements
covariance matrix of a variate vector

number of measured data points

number of atoms in sample; number of components in system;
number of observed events; counting rate modified by dead time

number of atoms in sample; true counting rate
integrated flux over the sample
zero matrix

observed-calculated number; probability that an atom will decay
and give rise to a count

distribution function of x (along coordinate u)
probability distributicn function for intervals between events
probability distribution function for output pulses (integral)

special polynomial defined in eq. IV. 25, p. 69



e ST

o B i et

TN 5 R - S T

var(x)

o

™ <
.

-130-

vector of residuals

renormalizing factor (see eq. IV.39, p. 73)

residual, difference between observed point and calculated curve
weighted sum of squares; scaling factor

time

duration of measurement of background or gross count
half-life

expected value of count

upper triangular matrix

variate vectors

variance of x

waiting period

weighting factors

number of atoms or counts per minute present at zero time or
a specified time

average value of x
vector with components X3 convenient symbol for E(x)
counting rate; weighted counting rate

observed background count; instrumental variance factor for
background

instrumental variance factor for gross count
duration of an irradiation
delta function: 6ij =1 for i = j, 6ij = 0 otherwise

duration of a counting measurement; time between zero time and
first count

small error

counting efficiency; true values of counting rates (weighted)
decay constant = (ln 2)/T]/2

true decay constant

true values of the values to be solved for

probability that number of atoms in a sample is z

reaction cross section; standard deviation

variance (of x)

dead time; resolving time

flux (particles per unit area per unit time)

chi-squared (statistical test)
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IX. INDEX

Absolute counting:
measurement of --- efficiency by coincidence techniques
precision of --- by coincidence
Absorbing:
radiation scattering and ---
Activation analysis
Activities:
use of daughter --- to measure nuclear reactions
Activity:
growth of ---
half-life by direct measurement of specific ---
measurement of half-life by specific ---
Algebra:
matrix ---
of covariances
of expected values
of linear equations
of matrices
of variances
Amplitude
Analysis:
activation ---
improper use of least-squares ---
of replicate samples
of variance
statistical imprecision of a single radiochemical ---
Analytical:
variance due to --- technique

variations

Page No.

127
127

65
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13
103
103

26
36
36
26
26
36
124

94
35,95
35,95

95

96
95
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Page No.
Arithmetic average . . . . . . . . . . 40
Assumptions underlying decay equations . . . . . 3
Average: . . . . . . . . . . . 31
arithmetic --- Ce e, 40
best --- value for a given number of replicates . . 98
best value of an --- . . . . . . . . 46
estimated measure of the precision of the --- of a number
of measurements . . . . . . . . 42
having the least variance . . . . . . . 45
individual quantities which are to be --- are not
uncorrelated . . . . . . . . . . 45
variance of an --- . . . . . . . . 40
variance of a weighted --- . . . . . . . 47
variance of best --- value for a given number of replicates 98
weighted --- . . . . . . . . . . 44,45
weighting factor to --- the replicate results . . . 96
Averaging:
and sampling statistics . . . . . . . 39
. measurements of unlike variances . . . . . 45
of nonindependent quantities . . . . . . 45
replicate values . . . . . . . . . 98
weight in the --- process . . . . . . . 44
Avoidance of computer overflow . . . . . . . 94
Avoiding : . . . . . . . . . . . 94
gross errors . . . . . . . . . . 94
losses in slow circuit components . . . . . 117
Background: . . . . . . . . . . . 76,84
correction for counter --- . . .. . . . 76
correction when Poisson distribution is not applicable . 76
nonrandom . . . . . . . . ; . 76

renormalized probability distribution of --- count 16
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Bernoulli distribution

expected value of . . . . . . . . . 65

expected value of a count from observed count for --- 75

standard deviation of ---, . . . . . . . 66

variance of expected value of a count for --- . . . 75
Blocking of a counter . . . . . . .. . 113
Branched decay . . . . . . . . . . 21
Branching:

decay . . . . . . . . . . . 19

ratio . . . . . . . . . . . 19

growth factor in --- decay . . . . . . . 20
Buildup toward equilibrium . . . . . . . . 8
Cascade . . . . . . . . . . . 124
Chains:

decay --- with more than two consecutive decays . . 21
Chance:

coincident events . . . . . . . . . 120

ratio of true to --- coincidences . . . . . 122
Chi-square test . . . . . . . . . . 88

* thi-squared: . . . . . . . . . . . 63

test of goodness of fit . ; . . . . . . 60
Circuit:

avoliding losses in slow --- components . . . . 117

distribution of intervals between output pulses from a

scale-of-m --- . . . . . . . . . 117

electronic scaling --- . . . . . . . 117

regularizing action of a scaling --- . . . . . 117,121

scaling --- . . . . . . . . . . 85,117
Coefficients . . . . . . . . . . . 26
Cofactor of a matrix element . . . . . . . 29
Coincidence: . . . . . . . . . . . 110

counting of large solid angles . . . . . . 122

expected value of the false --- rate . . . . . 123

false --- . . . . . . . . . . . 125,126




-134-

_ Page No.
Coincidence:
measurements of absolute counting efficiency by ---
techniques . . . . . . . . . . 127
precision of absolute counting by --- . . . . 127
ratio of true to chance --- . . . . . . . 122
true . . . . . . . . . . . 126
Coincident:
chance --- events . . . . . . . . . 120
effects of --- events on discriminated counts . . 124
events . . . . . . . . . . . 124
measurement of --- events . . . . . . 120
true --- counts . . . . . . . . . 125
true versus false --- counts . . . . . . 122
truly --- events . . . . . . . . . 120
variance of --- event rate . . . . . . . 123
variance of the false --- rate . . . . . . 123
Column vector . . . . . . . . . . . 27
Combination:
of errors . . . . . . . . . . 37
: of matrices . . ; . . . . . . ; 27
variance of any linear --- of variates . . . . 39
Complex systems:
mathematical techniques for deriving formulas for decay
of . . . . . . . . . . . 21-24
Component: . . . . . . . . . . . 4
precision of the amount of each ~-- present . . . 87
Components:
avoiding losses in slow circuit --- . . . . . 117
correction for presence of daughter in parent-daughter systems
where both --- have comparable half-lives . . . 13
F-test for number of --- . . . . . . . 60
identification of --- . . . . . . . . 101
number of --- . . . . . . . . . 101

two or more long-lived --- . . . . . . 107
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Page No.
Computational: least-squares --~ method ., ) ] ) . . 61
Computer overflow: avoidance of --- . . . . . . 94
Confidence:
limits . . . . . . . . . . . . 33,34
n-percent --- interval . . . . . . . . 33
Consecutive:
decay chains with more than two --- decays . . . . 21
decay for parent and daughter with equal half-life . . 11
disintegrations . . . . . . . . . . 10
Constant: . . . . . . . . . . 35
decay --- . . . . . . . . . . . 3
method of evaluating a decay --- . . . . . . 101
Constants:
partial decay --- . . . . . . . . . . 101
Correction:
actual --- for dead time . . . . . . . . 113
background --- when Poisson distribution is not applicable. 76
factor for presence of daughter . . . . . . 12
* for counter background . . . . . . . . 76
for presence of daughter in parent-daughter systems where
both components have comparable half-lives . . . 13
for presence of daughter in parent-daughter systems where
daughter is considerably longer-lived than parent . . 13
Correlation . . . . . . . . . . . . 35
Count:
distribution of expected values for a given observed ---
for a large sampling . . . . . . . . 69
distribution of expected values for a given observed ---
for a small sampling . . . . . . . . 68
expected value of a --- from observed --- for Bernoulli
distribution . . . . . . . . . . 75
expected value of a ~-- from observed value for Poisson
distribution . . . . . . . . . . 69
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Count:
expected value of net --- . . . . . . . 77
gross --- . . . . . . . . . . 84
high --- rates . . . . . . . . . 113
probability of disintegrating and producing a --- . . 64
renormalized probability distribution of background --- 76
variance of an extrapolated --- rate . . . . 79
variance of an observed --- . . . . . . 84
variance of expected value of a --- for Bernoulli
distribution . . . . . . . . . . 75
variance of expected value of --- for a Poisson
distribution . . . . . . . . . . 69
variance of expected value of net --- . . . . 76
Counter:
blocking of a --- . . . . . . . . . 113
correction for --- background . . . . . . 76
measurement of --- dead time with an oscilloscope . 118
measuring --- dead time . . . . . . . 114
° saturation of a --- . ) . . . . . . 113
Counting:
additive variance due to --- equipment . . . . 86
coincidence --- of large solid angles . . . . 122
definition of --- data . . . . . . . . 1
differential --- . . . . . . . . . 107
distribution functions of ~-- results . . . . . 64
effect of dead time on observed --- rate . . . . 112
efficiency . . . . . . . . . . 64
geometry of --- arrangement . . . . . . 65
maximum --- rate . . . . . . . 113
measurement of absolute --- efficiency by coincidence
techniques . . . . . . . . . . 127
net --- rate . . . . . . . . . . 84

precision of absolute --- by coincidence . . . . 127
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Counting:
probability that precisely n counts will be recorded
during the --- interval
rate

single photopeaks

statistics of --- data

total --- rate of a sample

variance of net --- rate
Counts:

effect of coincident events on discriminated ---
extrapolating --- per unit time

probability that precisely n ~-- will be recorded during
the counting interval . . . . . .

true coincident ---
true versus false coincident ---
Covariance:
diagonal elements of --- matrix are variances
matrix
of x and y
Covariances:
algebra of ---
Criteria for rejection of data
Criterion: additional --- for rejecting data
Cross section: reaction --- measurement
Crossover:
transition
Cutoff: energy ---
Daughter:

analytical scheme when both parent and --- are formed
directly by nuclear reactions

analytical scheme when parent is much shorter-lived
than --- ‘

Page No.

65

87
64
11
84

124
81

65
125
122

87
39, 46, 52
33

36
92
93
83
126
125
87
10

17

16
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Daughter:

analytical scheme when both parent and --- are formed
directly by nuclear reactions

analytical scheme when parent is much shorter-lived
than --- . .

analytical schemes when half-life of parent is much longer
than that of ---

consecutive decay for parent and --- with equal half-life
correction factor for presence of ---

correction for presence of --- in parent-daughter systems
where both components have comparable half-lives

correction for presence of --- in parent-daughter systems
where --- is considerably longer-lived than parent

use of --- activities to measure nuclear reactions
Dead time:

actual correction for ---

effect of ~--- on observed counting rate
estimation of --- by electronic methods
estimation of --- by graphical methods

measurement of ---
measurement of counter --- with an oscilloscope

measuring counter ---

measuring --- with a divided sample
measuring --- using a short-lived species of well-known
half life
Decay:
assumptions underlying --- equations
branched ---
branching ---

chains with more than two consecutive ---

comparison of the --- of the unknown species with that of
a species with precisely known half-life,.

consecutive --- for parent and daughter with equal half-
life

constant

curve

curve of a two-component system

formation of active species by --- of a radioactive
precursor

Page No.

7
16

15

11
12

13

13
13

110,112,113

113
112
116
116
114
118
114
114

115

21
19
21

103

5,6
106

10
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Decay: Page No.
fundamental law of radioactive ~-- |, . . . . 3
graphical resolution of --- curve
growth factor in branching --- . . . . . 20
least-squares solution to resolve --- data . . . 83
mathematical techniques for deriving formulas for ---

of complex systems . . . . . . . 21-24
matrix inversion method for resolution of --- curve . 87
method of evaluating a --- constant . . . . 101
observing --- over long periods of time . . . 103
of a parent-daughter pair where parent is the longer-

lived species . . . . . . . . 14
of a parent-daughter pair where parent is the shorter-

lived species . . . . . . . . 14
of a parent-daughter system . . . . . . 12
partial --- constants . . . . . . . 19
proper weighting factors for use in a least-squares

calculation of --- data . . . . . . 87
proper weighting of --- data for a least-squares solution 83
rate for the false sum peak . . . . . . 127

. resolution of --- data . . . . . . . 83
resolving the --- data . . . . . . . 4
scheme . . . . . . . . . . 65
two-component --- curve . . . . . . 6

Decays:
self-calibrating method for measuring long-lived ---. 105

Definition of counting data . . . . . . . . 1

Degrees of freedom . . . . . . . . . 43

Depleted target material . . . . . . . . 9

Destruction of product . . . . . . . . . 10

Detection of multicomponent systems . . . . . 105

Detector efficiency . . . . . . . . 9

Determinant of a square matrix . . . . . . . 29

Deviation:
standard --- of Bernoulli distribution . . . . 66
standard --- of Poisson distribution . . . . 67
standard --- of normal distribution . X . . 68

standard --- of x . . . . . . . . 33
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: E Deviations:
ﬁ number of standard --- . . . . . . . . 92
1 Diagonal:
QZ elements of covariance matrix are variances . . . 87
'é inverting a --- matrix i . . . . . . . 63
§ matrix . . . . . . . . . . . 29
'} Difference variance . . . . . . . . . . 37
i Differential counting e T
, | Discriminated:
: effect of coincident events on --- counts . . . . 124
Disintegrating:
? : probability of --- and producing a count . . . . 64
s : Disintegration:
measurement of true --~ rate . . . . . . 127
g;,5 Disintegrations:
: consecutive . . . . . . . . . . 10
Distribution:

- background correction when Poisson --- is not applicable 76
Bernoulli --- . . . . . . . . . . 65
expected value of a count from observed count for

Bernoulli --- . . . . . . . . . 75
expected value of a count from observed value for a

Poisson --- . . . . . . . . . . 69
expected value of Bernoulli --~- . . . . . . 65
function . . . . . . . . . . . 31-33
functions of counting results . . . . . . . 64
Gaussian --- |, . . . . . . . . . 67
normal --- . . . . . . . . . . 67
normalized --- function . . . . . . . . 32
of expected values for a given observed count for a

large sampling . . . . . . . . . 69
of expected values for a given observed count for a

small sampling . . . . . . . . . 68

of intervals between output pulses from a scale-of-m
circuit . . . . . . . . . . . 117
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Distribution:
Poisson ---
Poisson --- not valid
renormalized probability --- of background count

standard deviation of normal ---
standard deviation of Bernoulli ---
standard deviation of Poisson ---

variance of a total ---

variance of expected value of a count for a Poisson ---

variance of expected value of a count for Bernoulli ---

variance of the --- formed by a sample
Divided sample:

measuring dead time with a ~--
Efficiency:

counting ---

detector ---

measurement of absolute counting --- by coincidence

techniques
Electronic:
estimation of dead time by --- methods
scaling circuit
Element:
cofactor of a matrix ---

of the matrix

Elements:

diagonal --- of covariance matrix are variances
Energy:

cutoff

particle --- spectra
Equation:

inverse of matrix of the normal ---
inverse matrix of the normal ---

number of terms in the ---

Page No.

67
70
76
68
66
67
42
69
75
42

114

64

127

116
117

29
27

817

817
124

52
61
60
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Page No.
Equations:
algebra of linear --- 26
assumptions underlying decay 3
normal --- 49,52, 89
normal --- in matrix notation 49
simultaneous linear --- 26
weighted --- for data in matrix form 61, 62
Equilibrium: 7
buildup toward --- 8
Equipment:
additive variance due to counting 86
Estimate:
best --- 26
best --- of the true value for an experiment 96
graphical ~--- of the half-life 6
of the half-lives )
to correct for variances not included in least-squares ,
weighting 56
unbiased --- of variance 42
unbiased --- of variance in least-squares solution 56
unbiased --- of variance of points in least-squares solution 53
Estimated:
measure of the precision of an individual measurement 42
measure of the precision of the average of a number of
measurements 42
Estimation:
of dead time by electronic methods 116
of dead time by graphical methods 116
of instrumental variance 88
of population variance from a sample 41
of variance due to instrumental variation 87
precision of --- of a mean 40
Evaluating:
data 92
iteration methods for --- lambda 107
method of --- a decay constant 101
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Evaluation:
graphical --- of lambda
of lambda for known multicomponent systems
Event rate:
variance of coincident
Events:
chance coincident ---
coincident ---
effect of coincident --- on discriminated counts
measurement of coincident --~-
probability of observing N ---
probability of recording exactly N ~--
truly coincident
Expansion by minors
Expected value:
algebra of ---

distribution of --- for a given observed count for a large
sampling

distribution of --- for a given observed count for a small
sampling

of a count from observed count for Bernoulli distribution .

of a count from observed value for a Poisson distribution .

of a matrix or vector
of any function of x
of Bernoulli distribution

of n and its variance where we have an actual observed
value

of net count

of the false coincidence rate

of x
variance of --- of net count
variance of --- of a count for a Bernoulli distribution

variance of --- of a count for a Poisson distribution

Page No.

102
107

123

120
124
124
120
66
6o
120
29

36
69

68
75
69
02
32
65

68
77
123
32
77
75
69
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Experiment:

best estimate of the true value for an --- . . . . 96

information to be obtained in an --- on radioactive

material 4

Extrapolated:

variance of an --- count rate 79
Extrapolating:

counts per unit of time 81
Extrapolation:

errors of --- 79,82

factor 80,81

variance 82

variance of the --- factor 81
F-test for number of components . . . . . . . 60
Figure:

loss . . . . . . . . . . . 61

of merit . . . . . . . . . . . 9
Figures:

significant . . . . . . . . . . . 61
Fit:

causes of poor --- . . . . . . . . . 60

chi-squared test of goodness of --- . . . . . 60

effect of varying an input lambda on the --- of the data to

the calculated curve . . . . . . . . 91

goodness of --- . . . . . . . . . 94
Fluctuations:

variance due to statistical --- . . . . . . 96
Flux:

constant . . . . . . . . . . . 8

reactor --- measurement . . . . . . . 83

varying . . . . . . . . . . . 8
Form:

improper --- for function being fitted . . . . . 94
Formation:

independent --- . . . . . . . . . 21

net rate of --- . . . . . . . . . . 7

of active species . . . . . . . . . 8-10

of active species by decay of a radioactive precursor . 10

of species in nuclear reactions . . . . . . 5
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Formed:

analytical scheme when both parent and daughter are ---
directly by nuclear reactions

variance of the distribution --- by a sample
Formulas:

mathematical techniques for deriving --- for decay of
complex systems .

Freedom:
degrees
Function:
distribution
improper form for --- being fitted
expected value of any --- of x
normalized distribution ---
Functions:
distribution --- of counting results
Fundamental:
law of radioactivity
law of radioactive decay
Gamma spectrum:
difficulty in interpreting sum peaks in ---
Gaussian distribution
Geometry:
of counting arrangement
Goodness of fit:
chi-squared test of ---
Graphical:
estimate of the half-life
estimation of dead time by --- methods
evaluation of lambda
resolution of decay curve
Growth,
factor
factor in branching decay

of activity

Half-life:
alteration in the --- value

analytical schemes when --- of parent is much longer than
that of daughter .

Page No.

17
42

21-24
43

31-33
94
32
32

64

103

126
67

65
94
60

116
102

12
20
13
4,6
91

15
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Page No.
Half-life:
by direct measurement of specific activity . . . 103
consecutive decay for parent and daughter with equal --- . 11
effect of an impurity on the measurement of a --- . . 101
least-squares solution for --- . . . . ; . 102
measurement of a --- in a single-component system of
short or moderate --- . . . . . . . 102
measurement of --- in a single-component system with
long -——— . . . T 103
measurement of --- by specific activity . . . . 103
measuring dead time using a short-lived species of well-
known --- . . . . . . . . . . 115
moderate --- . . . . . . . . . . 102
precisely known . . . . . . . . . 103
Half-lives:
correction for presence of daughter in a parent-daughter -
systems where both components have comparable --- . 13
difficulty of resolving two species with similar --- . . 106
estimation of the --- . . . . . . . . b)
measurement of --- . . . . . . . . 101
. partial --- . . . . . . . . . . 20
sensitivity of x to the input --- . . . . . . 95
Half-period . . . . . . . . . . . . 4
High count rates . . . . . . . . . . . 113
High-flux reactors . . . . . . . . . . 9
Human error . . . . . . . . . . . . 92
Identification of components . . . . . . . . 101
Imprecision:
statistical --- of a single radiochemical analysis . . 95
Improper:
form for function being fitted . . . . . . 94
use of least-squares analysis . . . . . . . 94
Improving:
values of the input lambda . . . . . . . 92
Impurities . . . . . . . . . . . . 101
Impurity:

effect of an --- on the measurement of a half-life . ) 101
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FPage No.
Independent formation . . . . . . . . . . 21
Individual:
estimated measure of the precision of an ~-- measurement 42
quantities which are to be averaged are not uncorrelated . 45
variance of an --- measurement . . . . . . 40
Information:
loss of ~~- due to rounding errors . . . . . 61
to be obtained in an experiment on radioactive material . 47
Instrument malfunction . . . . . . . . . 92
Instrumental variance:
estimation of . . . . . . . . . . 88
magnitude of --- . . . . . . . . . 88
Instrumental variations:
estimation of variance due to --- . . . . . ; 87
Integral:
treatment of unknown system by --- transforms . . 110
Intensity:
- sum peak . . . . . . . . . . . 126
Interpolation:
variance due to neglect of --- lights . . . . . 85, 86
Interpreting:
difficulty in --- sum peaks in gamma spectra . . . 126
Interval: . . . . . . . . . . . . . 65
average --- between pulses . . . . . . . 117
n-percent confidence --- . . . . . . . 33
Intervals:
distribution of --- between output pulsesfrom a scale-of-m
circuit . . . . . . . . . . . 117
Inverse:
matrix . . . . . . . . . . . 29, 30
matrix of the normal equation . . . . . . 61
of matrix of the normal equation . . . . . . 52
Inversion:
matrix --- by orthogonalizing . . . . . . 61
matrix --- method for resolution of decay curve . . 87
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g
; Inverting:
{ a diagonal matrix 63
it Ionization:
\ »‘ measurement of half-life using two --- chambers 104
' Iteration:
,. methods for evaluating lambda 107
] Lambda:
, effect of varying an input -~-- on the fit of the data to the
5 calculated curve 91
4 evaluation of --- for known multicomponent systems 107
4: graphical evaluation of --- 102
* improving the values of the input --- 92
¢ iteration methods for evaluating --- 107
measurement of --- 101
i Lambdas:
% effect of a slight change in one of the --- resolution 89
' systematic effect on resolution caused by slight variations
o in the values of the --- 84
- Law:
i fundamental --- of radioactive decay 3
fundamental --- of radioactivity 103
Least-squares:
computational method 61
effect on --- solutions of any unanticipated variances 83
f estimate to correct for variances not included in ---
weighting 56
4 improper use of --- analysis 94
l precision of each parameter in a --- solution 56
proper weighting factor for use in a --- calculation of
i decay data 87
L proper weighting for --- 50
proper weighting of decay data for a --- solution 83
L.east-squares solution: 47
and weighting of data 84

for half-life

99
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Least-squares solution:
in matrix notation
to resolve decay data
unbiased estimate of variance in --~
unbiased estimate of variance of points in ---
variances of results of ---

weighting factors in ---

Limits:
confidence
Linear:
algebra of --- equations
simultaneous --- equations
variance of any --- combination of variates
Live time
Long-lived:
self-calibrating method for measuring --- decays
two or more --- components
Losses:
avoiding --- in slow circuit components
--- due to slow register response
reducing ---
Magnitude:
instrumental variance
Malfunction:
instrument
Mathematical:
techniques
techniques for deriving formulas for decay of complex
systems
Mathematics:

of radioactive processes
statistical

Matrices:
algebra of ---
combination of ---

multiplication of ---

Page No.

50
83
56
53
52
48

34

26
26
39
117

105
107

117
117
121

88

92

25

21-24

26
27
28
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algebra

cofactor of a -~- element

covariance

determinant of a square ---

diagonal ---

diagonal elements of covariance --- are variances

element of the ---

expected value of a --- or vector
inverse

inverse --- of the normal equation
inverse of --- of the normal equation

inversion by orthogonalizing

inversion method for resolution of decay curve
inverting a diagonal ---

least-squares solution in --- notation
lower triangular ---

multiplication

nonsingular ---

normal equations in --- notation
orthogonalization process

relationships

singular ---

square ---

symmetric ---

transpose of a - -~

upper triangular ---

unit ---

weighted equations for data in --- form

zero ---

Matrix-vector:

multiplication

notation

Page No.

26
29
39, 46, 52
29
29
87
27
52
29, 30
61
52
61
87
63
50
29
28
29
49
62
30
29
29
29
27
29
29
61, 62
29

27
26



-151-

Page No.
Maximum:
counting rate . . . . . . . . . . 113
production of a radioactive species . . . . . 10
Measure:
estimated -~- of the precision of an individual measure-
ment . . . . . . . . . . . 42
estimated --- of the precision of the average of a number
of measurements . . . . . . . . . 42
Measured:
probability that a --- value of x will fall between A and B . 32
Measurement:
effect of an impurity on the --- of a half-life . . . 101
estimated measure of the precision of an individual --- . 42
half-life by direct --- of specific activity . . . . 103
of a half-life in a single-component system of short or
moderate half-life . . . . . . . . 102
of absolute counting efficiency by coincidence techniques . 127
of coincident events . . . . . . . . . 120
of counter dead time with an oscilloscope . . . . 118
of dead time . . . . . . . . . . 114
of half-lives . . . . . . . . . . 101
of half-life by specific activity . . . . . . 103
of half-life in a single-component system with long half-
life . . . . . . . . . . . . 103
of half-life using two ionization chambers . . . . 104
of lambda . . . . . . . . . . . 101
of true disintegration rate . . . . . . . 127
reaction cross section --- . . . . . . . 83
reactor flux --- . . . . . . . . . 83
variance of an individual --- . . . . . . . 40
Measurements: '
averaging --- of unlike variances . . . . . 45
estimated measure of the precision of the average of a
number of --- . . . . . . . . . 42

statistical reliability of --- on nuclear reactions . . 82
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Measuring:

counter dead time

dead time using a short-lived species of well-known half-

life

dead time with a divided sample
Mechanical registers
Merit:

figure of ---
Minors:

expansion by ---

moderate half-life
Multicomponent:

detection of --- systems

evaluation of lambda for known --- systems

unknown --- systems
Multiplication:

matrix ---

matrix-vector

of matrices
N-percent of confidence interval
Neglect: |

variance due to --- of interpolation lights
Nonindependent: averaging of --- quantities
Nonrandom background
Nonsingular matrix
Normal:

distribution

equations

equations in matrix notation

inverse matrix of the --- equation
inverse of matrix of the --- equation
standard deviation of --- distribution

Normalized distribution function

Page No. -

114

115
114
117

105
107
109

28
27
28
33

85, 86
45
76
29

67
49,52, 89
49
61
52
68
32
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Page No.
Notation:
least-squares solution in matrix --- b)
matrix-vector --- 26
normal equations in matrix --- 49
Nuclear reaction:
rate of the --- 5
Nuclear reactions:
formation of species in --- 5
statistical reliability of measurements on --- | 82
use of daughter activities to measure --- 13
Number:
F-test for --- of components 60
of components 101
of standard deviations 92
of terms in the equation 60
variance of best average value for a given --- of replicates 98
Observed count:
distribution of expected values for a given --- for a large
sampling 69
distribution of expected values for a given --- for a
small sampling 68
expected value of a count from --- for a Poisson distribution 69
expected value of a count from --- for Bernoulli distribution 75
expected value of n and its variance where we have an
actual --- of n 68
variance of --- 84
Observed counting rate:
effect of dead time on --- 112
Observing:
decay over long periods of time 103
probability of --- n events 66
Orthogonal vectors 30
Orthogonalization:
matrix --- process 62
Orthogonalizing:
matrix inversion by --- ¢ 61
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Oscilloscope:

measurement of counter dead time with an ---
Output:

data

distribution of intervals between --- pulses from a scale-
of-m circuit

Overflow:

avoidance of computer ---
Parameter:

precision of each --- in a least-squares solution
Parameters:

effect of input --- on resolution

Parent:

analytical scheme when both --- and daughter are formed
directly by nuclear reactions

analytical scheme when --- is much shorter-lived than
daughter

analytical schemes when half-life of --- is much longer
than that of daughter

consecutive decay for --- and daughter with equal half-
life

Parent-daughter:

correction for presence of daughter in --- systems
where both components have comparable half-lives

correction for presence of daughter in --- systems
where daughter is considerably longer-lived than
parent

decay of a ~--- pair where parent is the longer-lived
species

decay of a --- pair where parent is the shorter-lived
species

decay of a --- system

Partial:
decay constants
half-lives
Particle energy spectra
Pattern:

systematic ~-- in residuals

Page No.

118

94

117

94

56

89
10

17
16
15

11

13

13
14

14
12

19
20

124

94
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Percentage error
Period
Periods:
observing decay over long --- of time
Photopeaks:
counting single ~---
Points:
suspect

unbiased estimate of variance of --- in least-squares
solution

Poisson distribution:
background correction when --- is not applicable
distribution not valid
expected value of a count from observed value for a ---
standard deviation of ---
variance of expected value of a count for a ---
Poor fit:
causes of
Population:
estimation of --- variance from a sample
Precision:

estimated measure of the --- of an individual measure-
ment

estimated measure of the --- of the average of a number
of measurements

of absolute counting by coincidence
of each parameter in a least-squares solution
of estimation of a mean

of the amount of each component present
Precursor:

formation of active species by decay of a radioactive --- .

Probability:
of disintegrating and producing a count
of observing n events

of recording exactly n events

Page No.
92

103

87

93, 94

53
67
76
70
69
67
69

60

41
33, 94

42

42
127
56
40
81

10
13
64
66
65
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Page No.
Probability:
that a measured value of x will fall between A and B . . 32
that precisely n counts will be recorded during the
counting interval . . . . . . . . . 65
renormalized --- distribution of background count . . 76
Product:
destruction of . . . . . . . . . . 10
variance of a . . . . . . . . . . 37
Production:
maximum --- of a radioactive species . . . . 10
Pulses:
average interval between --- . . . . . . . 117
distribution of intervals between out --- from a scale-
of-m-circuit . . . . . . . . . . 117
Quotient:
variance of a --- . . . . . . . . . 38
Radiation scattering and absorbing . . . . . . . 65
Radioactive:
formation of active species by decay of a --- precursor . 10
: fundamental law of --- decay . . . . . . 3
information to be obtained in an experiment on ---
material
mathematics of --- processes
maximum production of a --- species . . . . . 10
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