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Carbon emissions and
the scale of the problem
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Rates of atmospheric CO, change
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Atmospheric CO, is changing ~ 100 times more rapidly than natural variation

Calculated from Petit et al (1999) Calculated from Keeling and Whorf (2005)



Anthropogenic CO, emissions exceed natural
emissions by a factor of about 100
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Land cwe@ge ~1.5PgC
Fossil fuels ~ 8.4 PgC
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Volcanos, etc ~ 0.1 PgC




Trajectory of Global Fossil Fuel Emissions
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Strategies to climate stabilization

Stabilize
climate
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Forests



With deforestation, CO, is much higher
but temperatures are slightly cooler

Atmospheric CO, Temperature
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Global deforestation experiment: net
temperature change (CO, + biophysical)
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Temperature
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predicted in
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Predicted role of forests

Tropical forests cool the planet
Temperate (mid-latitude) forests do little
Boreal forests warm the planet
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Intentional intervention in
the climate system



In all IPCC scenarios,
temperatures continue to rise
throughout the century
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CO, emissions (GtCly)

Fossil-fuel CO, emissions
exceed SRES scenarios
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What will we do if there
is a climate crisis?

% CHANGE FROM 1979-1990 MEAN

-100

- Arctic sea ice loss compared to IPCC models

Arctic ice extent loss to September 2007 compared to IPCC modelled changes
using the SRES A2 CO2 scenario (IPCC high CO2 scenario). September loss data
from satellite observations, Data smoothed with a 4th order polynomial to smooth
out the year-to-year variability. Chart courtesy Dr Asgeir Sorteberg, Bjeknes

- Centre for Climate Research and University Center at Svalbard, Norway.
Date: 23 September 2007 www.carbonequity.infofimages/seaice07.jpg
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Preventing further warming
reguires near-zero emissions
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Fraction of an additional CO,
release remaining in atmosphere
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Geoengineering

10 um thick Fresnel 2% of sunlight
lens near L1 diffracted to
bypass Earth

A back-up system, in

case transformation of o L
our energy system \ EE;*;‘;;_E‘Q‘}
occurs too slowly to S

avert irreversible :
environmental damage? parasol:screen

or lens

aerosol
scatters in
the atmosphere

Hoffertet al., 2002
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Volcanoes caused global cooling
by putting dust in the stratosphere
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There are a range of strategies

Geoengineering weighed up

20000 W

Orbiting mirrors deflect sun's rays
READINESS: 00 ©

fails to prevent acidic oceans

00000
@eo00 REFLECTIVE CROPS
ARTIFICIAL TREES Planting crops that
(0, sucked from airand reflect more sunlight
stored underground READINESS: @@
READINESS: @ @ CosT: §
COST: $55 FLAW: large land area
FLAW; large geological needed; falls to prevent
cache needed aridic oceans
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BIOCHAR

Agricultural carbon wasteis
burned and buried
READINESS: @ @

COST: §%

FLAW: large land area needed

o0
OCEAN FERTILISATION
Iron filings stimulate CO,-eating plankton
READINESS: @@
COST: 8%
FLAW: unknown effects on ecosystems

@ Cooling factor: Readiness:
potential to © - Withinyears
change Earth's © © - Withindecades
energy budget © €0 - Within centuries
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FORESTING
Treesabsorb CO,
READINESS: @ @
COST: $

FLAW: large land
area needed

Cost:
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AEROSOLS

Particles in the stratosphere|
reflect sun's rays|

READINESS: @

CosT: §

FLAW: risk of ozone depletion;
unknown weather effects,
fails to prevent acidic oceans|

@eeeo

CLOUD SEEDING
Atomising seawater creates
clouds toreflect sun's @ys
READINESS: @ @

COST: §$

FLAW: unknown weather
effects, patchy success; fails
to prevent acidic oceans
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©0000
CARBONATE ADDITION
Ground limestone helps
oceans absorb CO,
READINESS: @@

COST: 8$

FLAW; unknown effects
an ecosystems

§ - Cheap relative to cutting emissions
$5 - Significant compared to cost of cutting emissions
$45$ - Cutting emissions might be cheaper

Stratospheric dust

e From volcanoes, we
know it basically works

* From volcanoes, we
know it doesn’t cause
an immediate global
disaster

e Could be deployed
cheaply without any
leaps in technology

e Scalableto high
amounts of cooling




Geoengineering

CO, radiative forcing Radiative forcing from 1.8% reduction
from a CO, doubling (W / m?2) in solar intensity (W / m?2)
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Govindasamy and Caldeira, GRL, 2000



Model results for temperature

. ATemperature Statistical significance
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Model results for precipitation

APrecipitation Statistical significance
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Climate model res_ults

Latitude
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Direct intervention approaches

could cool Earth within years
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A small amount of dust can
stop global warming

e 10’s of kg per second

* Most injected dust remains in the
stratosphere remains about a year




Unanticipated outcomes




Anticipated outcomes
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Curse?

May destroy ozone layer, etc
May cause famines, etc

Distracts from
=, Source of

emissions g il

s e o N
= Nl k&
2o v e

Ocean acidification

Puts more power
in hands of
techno-military
evil-doers

Intrinsically evil

R'S‘f of irreparable “Undermines effort
environmental damage to reduce human

footprint on planet

Anti-democratic



Risk reduction

e |If you think you may need to intentionally
affect Earth’s climate

— it is less risky environmentally to start
testing soon
e Allows test to start small and ramp up cautiously

— it is more risky politically to start testing
soon






Ocean acidification



HCO,", CO,2, and CaCO, in H,0

0
g CO.2

0.0
HQH H,0 ’ g HCO.

00
.g CaCo, (solid)



Addition of CO,,
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CO, + H,0 > H,CO,
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H,CO, = H* + HCO,
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H,CO, = H* + HCO,

@g@ 0-0
H -
HCO, § g HCO;

H HT

00 |
.g CaCo, (solid)

0
g CO.2




H* + CO,2 > HCOy
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H* + CO,2 > HCOy
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H* + CO,2 > HCOy

@g@ 0-0
H -
HCO, § g HCO;

00 |
.g CaCo, (solid)

0
g CO.2

H H*




H* + CO,2 > HCOy
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CaCO, > Ca2* + CO,2
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Cao and Caldeira,2008



Latitudinal range of carbonate platforms for
past 600 million years
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Ridgwell, Kennedy and Caldeira (Science, 2003)

* Cartoon by Andy Ridgwell
an The ‘Modern’ mode of

calcium carbonate cycling

open ocean  coastal seas
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Both shallow-water and deep-
water carbonate accumulation
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Even with
atmospheric CO,
stabilization
at 450 ppm, the
calcite saturation
horizon shoals to
shallower than 1 km.
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Caldeira and Wickett (2005)



Predicted future CO, concentration exceed
those inferred for past 25 million years

20,000 PgC

Even if most fossil-fuel
carbon is never released to
the atmosphere, we will
produce geologically
unusual conditions

10,000 PgC

5000 PgC

2500 PgC

Paleo-CO, [lines] Iz e

I:',:I
(Pagani et al., 1999;

Pearson and Palmer, 2000) I? ! .SE.
0 Boron

Year 2300 atmospheric CO, == Alkenone
predictions for scenarios
involving fossil-fuel plus net
biomass release over several
centuries [colors]

(Caldeira and Wickett, 2005)
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Siliceous plankton bloom in the earliest Tertiary
of Marlborough, New Zealand

C. J. Hollis
Institute of Geological and Nuclear Sciences, P.O. Box 30-368, Lower Hutt, New Zealand
K. A. Rodgers
R. J. Parker

Department of Geology, University of Auckland, Private Bag 92019, Auckland, New Zealand

ABSTRACT
In marked contrast to mass extinctions and productivity crises in much of the world’s
oceans at the Cretaceous-Tertiary boundary, siliceous plankton thrived in earliest Paleo-

cene seas of Marlborough, New Zealand.

Mel Pollinger



Time scale for recovery after mass extinction

After a

comparatively short interval devoid of reefs at the early
Danian (<2 Ma) JGEANIEIRNEES

The rate of recovery of photic reefal ecosystems after the Cretaceous—Tertiary crisis 1s controversial.

coral-dominated reef systems came back imnto existence less than 2 Ma after the K/T boundary,

“ -
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The scale of the solution



GDP in 1990

Naki Nakicenovic



GDP in 2050

Naki Nakicenovic



GDP in 2100

Naki Nakicenovic



CO,-stabilization requires a huge abatement effort

Abatement
required (PgCl/yr)

Year Year
2055 2105

3% 24 128

25% | 17 76

2 % 12 44

CO, emissions (PgC)

Stabilization = 7+? PgC/yr 15%| 8 | 24

2005 2025 2045 2065 2085 2105
Year



CO,-stabilization requires a huge abatement effort

Carbon-neutral
power required

(TW/yr)
Year Year
2055 2105

3% 48 256

25% | 34 152

2% 24 88

CO, emissions (PgC)

Stabilization = 7+? PgC/yr 1.5% | 16 48

Assuming 2 TW per
2005 2025 2045 2065 2085 2105

Year vYedt2005 power = 13

Carbon-neutral energy needed for 1.5 % to 2 % growth in energy demand:
year 2055 - 16 to 24 TW/yr year 2105 > 48to 88 TW




Uncertainty in CO, stabilization target

* Uncertainty in CO, stabilization 4r
target comes from uncertainty in

w
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— acceptable global warming

N
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— climate sensitivity to a doubling of
atmospheric CO, content
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Acceptable global warming (°C)
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Mean rate of carbon-emissions-free primary power

capacity addition over next 50 years

Assumes

— 1S92a rates of GDP growth,
energy intensity improvement,
fossil-fuel mix, etc.

— Stabilization curves from

Caldeira et al. 2003

Rates increase after 2050
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Equilibrium global warming (°C)
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Climate sensitivity (°C/CO, doubling)

Caldeira, Jain
and Hoffert, 2003



Available power

Ocean

currents

Geothermal
Stream runoff

Global fossil fuel consumption (2000)

Solar radiation

| | | | | | | | |
1 100 10" 10" 10™ 10® 10" 10" 10 107
Power (W)

Smil, 2006



Storage and distribution required for wind and solar

O, Renewable
electrolyzer | electricity and

).

electric
power
conditioning

photovoltaic \Hzo
arrays

Hy

wind farms

to hydrogen
pipelines and
storage

to superconducting

liquid nitrogen
electric power grid

chiller

Hoffert et al., 2002
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Take home points

e We need a revolutionary transformation in our
global systems of energy production and
consumption

 The real challenge is the energy system of the
2" half of this century, but we are already
building the energy infrastructure for the 2nd
half of this century

 Global models of the Earth are essential tools
for developing sound policy



Reduce consumption



Mean of percent Happy and percent Satistied with lite as a whole

100

=k

80

75

i

55

G

55

0

45—

40

35

a0

-Happiness and e
Ieland  lands g~ Denrrark Switmerkn
Ireland Uy ] )
— G DP - Fin knd®Sweden ..Nnnuay
| | .ﬁ.uaalh . ‘S.ﬁ...
Poert hiid a Bal giurn
fealand =
i ﬂ 5 o2 USa
» i = &
o Coldmba g oo Ko Fraree & West Germany
| Philippines g Venezuel o Japarfly
Spain HiEia

% g . .
Nigeri:‘m“: . "'E."c? ® gChik Germar
. ina o Ep.ﬁ,rgentina- Partugal M

Rana- -
h;;gh. F'ak:i&ia.n #Poland Czech
L] ]
| Indiz Turkey  Slowenm
5. Africa »
- :I:n:-atia

[ Skvakia Yuge- W Hungar
El=via

| Macedoniapgp,
»

L : - .
| e People In Philippines and
ctonia Brazil
[ 0 . .Fh:imania .
= itnuania ® are just as happy as West
Armenia W .
o Euigri Germans, Canadians,
B o Japanese, and French
- Ukraine
® el but use 1/10t the energ
| Moldowva | | | | | | | | | | | |
1000 G000 D000 12000 17000 21000 2E000

GNP fcaplta (World Bank purchasing power parlty estimates, 1995 U.S.

Flgure 2.  Subjectve well-belng by level of economidce developrnent.

Source: World Values Surveys, GMP&apita purchasing power egtimates fiom World
Bank, World Dewlopment Eeport, 1957,

E=70 N=a5 p<.0000

Inglehart and Klingemann 2000.



Average 3

DEr-person «

after-tax income
in 1965 dollars +21

American

Income (and

energy use)

increases, e

H-

but we do
not become
happier

Fercentage very happy

Percentage
describing
themselves as
very happy

Year Myers, 2004



Japanese income (and energy use) increases,
but they do not become happier

Average reporied level

of well-heing in surveys Index of Japanese GNP,

(10 = extremely happy) per capita (1960 = 100)

10 500
3 400
6 300
4 200
2 100
0 0
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Veenhoven, 1993
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