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Abstract. To study the impacts of climate change on water resources in the western U.S., 

global climate simulations were produced using the National Center for Atmospheric 

Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn 

State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (20 

years) and three future (2040-2060) climate simulations to yield ensemble regional 

climate simulations at 40 km spatial resolution for the western U.S. This paper describes 

the regional simulations and focuses on the hydroclimate conditions in the Columbia 

River Basin (CRB) and Sacramento-San Joaquin River (SSJ) Basin. Results based on 

global and regional simulations show that by mid-century, the average regional warming 

of 1 to 2.5oC strongly affects snowpack in the western U.S. Along coastal mountains, 

reduction in annual snowpack was about 70% as indicated by the regional simulations. 

Besides changes in mean temperature, precipitation, and snowpack, cold season extreme 

daily precipitation increased by 5 to 15 mm/day (15-20%) along the Cascades and the 

Sierra. The warming resulted in increased rainfall at the expense of reduced snowfall, and 

reduced snow accumulation (or earlier snowmelt) during the cold season. In the CRB, 

these changes were accompanied by more frequent rain-on-snow events. Overall, they 

induced higher likelihood of wintertime flooding and reduced runoff and soil moisture in 

the summer. Changes in surface water and energy budgets in the CRB and SSJ basin 

were affected mainly by changes in surface temperature, which were statistically 

significant at the 0.95 confidence level. Changes in precipitation, while spatially 

incoherent, were not statistically significant except for the drying trend during summer.  

Because snow and runoff are highly sensitive to spatial distributions of 

temperature and precipitation, this study shows that (1) downscaling provides more 
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realistic estimates of hydrologic impacts in mountainous regions such as the western 

U.S., and (2) despite relatively small changes in temperature and precipitation, changes in 

snowpack and runoff can be much larger on monthly to seasonal time scales because the 

effects of temperature and precipitation are integrated over time and space through 

various surface hydrological and land-atmosphere feedback processes. Although the 

results reported in this study were derived from an ensemble of regional climate 

simulations driven by a global climate model that displays low climate sensitivity 

compared with most other models, climate change was found to significantly affect water 

resources in the western U.S. by the mid twenty-first century.  
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1. Introduction 

 

The Accelerated Climate Prediction Initiative (ACPI) (DOE 1998) was funded by 

the U.S. Department of Energy (DOE) to develop the scientific knowledge and 

computational infrastructures needed to carry through an end-to-end assessment of the 

possible effects of human-induced climate change. A nested model approach in which 

effects of greenhouse warming are propagated through a suite of Global Climate Models 

(GCMs), Regional Climate Models (RCMs), and impact assessment models was used for 

an end-to-end assessment. To demonstrate the feasibility of this approach, water 

resources in the western U.S. were chosen as the primary focus of impact assessment of 

climate change.  

There are important reasons to select the western U.S. and water resources for the 

demonstration. First, the population and economy of the western U.S. continue to grow 

fast. Planning for future resources is key to maintaining sustainable development of the 

region. Climate change is an important consideration in developing future plans because 

its impacts are potentially significant. Second, water resources are managed for multiple 

objectives such as flood control, hydropower production, irrigation supply, and fish 

protection that often conflict with one another. Historical climate variability has already 

been shown to significantly alter mean and extreme hydroclimate conditions of the 

Columbia River and Sacramento River (e.g., Gershunov and Barnett 1998; Mantua et al. 

1997; Cayan et al. 1999). Climate change can significantly alter snowpack and 

streamflow in major river basins of the west (e.g., Leung and Wigmosta 1999; Hamlet 

and Lettenmaier 1999; Mote et al. 1999; Miller et al. 2002). Climate change will thus add 
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another constraint on the existing water management system. Information produced by an 

experimental end-to-end assessment can therefore be instrumental in establishing 

guidelines for management considerations and future studies. Third, the western U.S. is 

marked by complex terrain and diverse climate regimes. The value of downscaling in 

end-to-end assessment can be tested more suitably in relation to water resource 

applications in major river basins and watersheds of the region.  

In the nested model approach used in end-to-end assessments, GCMs are used to 

produce simulations of current and future climate conditions. To bridge between spatial 

scales achievable by current GCMs (typically 150-300 km resolution) and those scales 

required by impact assessment, downscaling is used to produce climate projections at the 

regional scale. Studies have shown that the dynamically downscaled climate change 

signals retained the large-scale features of the global simulations. However, at the 

regional scales, the downscaled signals for temperature and precipitation can differ 

significantly from that produced by the GCMs, especially in regions with strong 

mesoscale forcings such as orography, lakes, and land surface heterogeneity (e.g, 

Whetton et al., 2001; Leung et al. 1999b; Giorgi et al., 1998; Laprise et al. 1998; Jones et 

al., 1997). In assessing the hydrologic impacts of climate change, differences between the 

climate change scenarios generated by GCMs and RCMs may lead to important 

differences in assessing water resources impacts.   

Recent studies of climate change have begun to use the ensemble simulation 

technique to improve the signal-to-noise ratio for estimation of climate response 

(Cubasch et al. 2001). In the ensemble technique, small perturbations are introduced in 

the initial conditions to generate climate variability in an ensemble of climate 
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simulations. Each simulation is considered a possible realization of the future climate. 

Larger ensemble size reduces the confidence interval for the signal as noise is averaged 

out over more independent realizations. When downscaling is applied to the global 

climate simulations, however, ensemble technique has been rarely used because of 

computational constraints (see Giorgi et al. 2001 for a summary of recent regional 

climate change simulations).  

A distinguishing feature of the ACPI pilot project is the use of ensemble 

simulations for both global and regional modeling as a measure of uncertainty in climate 

projections. That is, besides developing three ensemble global simulations of future 

climate, dynamical downscaling was performed based on a regional climate model 

(RCM) for each of the three ensemble global simulations. This paper presents regional 

climate change scenarios based mainly on the Penn State/NCAR Mesoscale Model 

(MM5) simulations. The MM5 model was evaluated in a hindcast mode by comparing 

long-term simulations driven by large-scale analyses against observations. Leung et al. 

(2002a&b) described various analyses and diagnostics of a 20-year simulation with MM5 

driven by the NCEP/NCAR reanalyses. They focused on evaluating climate features for 

the western U.S. at 40 km spatial resolution. The MM5 produced realistic seasonal 

climate statistics such as mean and extreme precipitation over the region. The model also 

produced realistic mesoscale features of ENSO precipitation anomalies that resulted from 

interactions of large-scale circulation with the underlying topography. Section 2 describes 

the models and numerical experiments used to produce ensemble global and regional 

climate simulations. Section 3 provides a brief evaluation of the downscaled control 

simulation. Section 4 presents analyses of climate change signals for the western U.S. and 
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discusses uncertainty in the climate signals based on ensemble simulations with the MM5 

and comparison with a set of simulations by another regional climate model. Our 

analyses were focused mainly on aspects of the simulations that were important for 

hydrologic consideration, which is the theme of the ACPI end-to-end assessment. Section 

5 summarizes the findings and implications and discusses potential research paths for 

future studies.  

It should also be noted that the downscaled results were used to drive various 

process models to study mid-century effects of climate change on water resources in the 

western U.S. These are described in a number of other papers in this same issue. 

Interested readers may refer to these papers for a comparison of hydrologic impacts 

derived directly from the regional climate model (this paper) and those derived from 

hydrologic models driven by the global and/or regional climate simulations reported in 

this paper. Hydrologic simulations were performed at spatial resolutions typically 5 to 10 

times higher than that of the regional models and bias correction was applied to the 

climate scenarios to ensure more realistic simulations of runoff under the control climate. 

 

2. Numerical Experiments 

 

The models and numerical experiments used to simulate global and regional climates are 

described in subsections 2.1 and 2.2. 

2.1. GLOBAL CLIMATE SIMULATIONS 

The global climate model used to simulate the control and future climate conditions was 

the National Center for Atmospheric Research/Department of Energy Parallel Climate 
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Model (NCAR/DOE PCM) described in Washington et al. (2000) and Dai et al. (2002). 

The model was developed jointly by Los Alamos National Laboratory (LANL), the 

Naval Postgraduate School (NPG), the US Army Corps of Engineers' Cold Regions 

Research and Engineering Lab (CRREL) and the National Center for Atmospheric 

Research (NCAR). It consists of the NCAR Community Climate Model version 3 

(CCM3), the LANL Parallel Ocean Program (POP), and a sea ice model from the Naval 

Postgraduate School coupled together in a massively parallel computer environment. The 

atmospheric component, the NCAR CCM3, includes its latest versions of radiation, 

boundary layer physics, and precipitation physics. CCM3 also includes a comprehensive 

land surface model (LSM), which takes into account soil physics and vegetation.  

The moderate resolution global ocean model uses the POP model with a displaced 

polar grid. The grid has an average resolution of 2/3 degree and increased latitudinal 

resolution near the equator of approximately 1/2 degree. Because of the displaced pole, 

there is relatively higher horizontal resolution in the eastern North Pacific, the Arctic 

Straits near northern Canada and Greenland, and the Gulf Stream area. The continents 

and bottom topography were carefully modified to obtain realistic flow in many regions 

throughout the globe. The model in its present form yields a reasonable simulation of the 

Arctic Ocean, tropical Pacific, and various boundary currents, such as the Gulf Stream, 

with some eddy-like activity in most basins. The elastic viscous plastic sea ice model 

uses a grid spacing of 27 km to represent small-scale features such as ice transport 

through the Canadian Archipelago and the East Greenland current region.  

The three component models are tied together through a flux coupler, which 

performs interpolations between the different grids of the component models, handles 
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data transfer between component models, and ensures conservation of the various 

interfacial fluxes. Flux adjustments are not used in the PCM.  

Washington et al. (2000) reported experiment results from a 300-year present-day 

coupled climate control simulation and transient 1% per year compound CO2 increase. In 

particular, a global warming of 1.27 °C occurred for doubled CO2 and 2.89°C occurred 

for quadrupled CO2. Barnett et al. (2001) reported that the PCM was able to reproduce 

both the observed change in global air surface temperature and ocean heat content 

because of its relatively low climate sensitivity. They argued that models with higher 

climate sensitivity might have difficulty satisfying the ocean constraint. The results 

reported in this study should therefore reflect the impacts of climate change based on 

projections by a model with low climate sensitivity.  

 In the ACPI pilot study, PCM was used to simulate the control and future global 

climate conditions at T42 spatial resolution. These simulations were initialized using 

assimilated ocean conditions for 1995 (Pierce et al. 2002). In the control simulation, 

which lasts for 80 years, concentration of CO2 (358 ppmv) and sulfate aerosols were kept 

constant at the 1995 level throughout the simulation. Three ensemble simulations of 

future climate conditions were then performed, except the concentrations of CO2, other 

greenhouse gases, and sulfate aerosols follow that of the IPCC business-as-usual (BAU) 

scenario between 1995-2100 (Dai et al. 2001a&b). Each simulation of the ensemble was 

initialized using different atmospheric conditions to generate three possible realizations 

of the future climate. Climate change signals were estimated based on differences 

between the ensemble mean of the future climate conditions and the control simulation. 

Since warming continues during the 80 years in the control simulation as the climate 
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system is transitioning to a state that is in equilibrium with the 1995 CO2 and sulfate 

aerosols forcings, there was a warming of up to 1oC in the western U.S. comparing the 

mean of the control simulation with the 1995 condition.  

 PCM simulation data were archived at three temporal frequencies. Two- and 

three-dimension instantaneous data needed for driving dynamical downscaling models 

were archived at 6-hourly intervals. Variables related to the surface energy and water 

budgets and outputs of the land surface models were archived as 6-hourly and daily 

averages. A long list of output variables was also archived as monthly averages. 

 

2.2. REGIONAL CLIMATE SIMULATIONS 

To obtain regional climate conditions for climate impact assessments, dynamical 

downscaling was performed using the MM5 (Grell et al. 1993). Leung et al (2002a&b) 

described in detail the model configuration and simulation results when the MM5 was 

driven by NCEP/NCAR reanalyses for 20 years. The same model configuration was also 

used in this climate change study. The nested configuration consists of a large domain 

that covers the U.S., part of Canada and Mexico, and the surrounding ocean at 120 km 

resolution and a nested domain at 40 km resolution that was used to produce higher 

resolution simulation for the western U.S. Figure 1 shows the grid cell locations of the 

PCM and MM5 within the nested domain. Also outlined in the figure are the boundaries 

of the Columbia River Basin (CRB) and Sacramento-San Joaquin (SSJ) River Basin, 

which are the study regions of the ACPI impact assessment. There are roughly 14 and 4 

PCM grid cells and 386 and 104 MM5 grid cells within the CRB and SSJ basin 
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respectively. At 40 km spatial resolution, the terrain features of the western U.S. are 

realistically represented and the basins are well resolved by many grid cells. 

The MM5 preprocessor was modified to convert PCM outputs to create initial and 

boundary conditions for running MM5. The lower and lateral boundary conditions were 

updated every 6 hours based on large-scale conditions of the global simulations. Large-

scale variables used in the boundary conditions include temperature, wind, water vapor 

mixing ratio, geopotential height, sea level pressure, and sea surface temperature from the 

PCM simulations. Physical processes represented in the MM5 include cumulus and 

shallow convection, mixed-phase cloud microphysics, longwave and shortwave radiation, 

turbulence transport, and land surface physics. Leung et al. (2002a) described the choices 

of physics parameterizations used in the simulations. In particular, differences between 

the OSU Land Surface Scheme used in MM5 and the Land Surface Model (LSM) used in 

PCM may account for some differences between surface variables in the global and 

regional simulations.  

The MM5 was used to downscale the control simulation that was initialized in 

1995 for the first 20 years and each of the three ensemble future climate conditions for 

2040-2060 to elucidate mid-century effects of greenhouse warming.  The ensemble 

simulations differ from one another because of differences in initial and boundary 

conditions provided by the PCM. According to the BAU scenario, the concentration of 

CO2 in the atmosphere increases from 358 ppmv in 1995 to 505 ppmv in 2050. Because 

changes in temperature and precipitation during the first 20 years of the control run was 

negligible, we have assumed that the control simulation is representative of the climate 

conditions of the 1990s. All global and regional climate simulations were performed on 
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an IBM-SP3 at the Oak Ridge National Laboratory using 64 processors. Different 

variables were archived at 3-hourly, 6-hourly, and daily intervals for climate analyses as 

well as for providing inputs to impact assessments. 

Besides using ensemble simulation technique to estimate uncertainty in the 

climate projections, we also compared the MM5 downscaled simulations with regional 

simulations produced by the NCEP Regional Spectral Model (RSM) (Juang and 

Kanamitsu 1994; Hong and Leetmaa 1999; Roads and Chen 2000; Roads et al. 2002). 

The RSM domain covers the whole U.S. with an average resolution of 50 km. Leung et 

al. (2002c) provide more details about the configuration of the RSM model and describe 

a comparison of MM5 and RSM simulations driven by global reanalyses for the western 

U.S. 

Two PCM simulations were used to drive the RSM to yield regional climate 

change scenarios. The first PCM simulation was based on a historical run initialized in 

1870 using historical CO2 concentrations. Downscaling was performed for 10 years 

between 1986-1996. The second PCM simulation was a continuation of the historical run 

projected into the future (2100) using CO2 and aerosol concentrations of the BAU 

scenario. These PCM scenarios differ from those used in the MM5 downscaling in that 

ocean conditions were simulated by the PCM in the historical run rather than assimilated 

for initializing the PCM in the control and future climate scenarios. The latter set of PCM 

simulations were not available at the time RSM downscaling was performed. The RSM 

downscaling of future climate was performed for 10 years between 2040-2050. RSM 

outputs were archived every 6 hours and compared with the MM5 simulations. Table 1 
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summarizes the models and characteristics of the global and regional simulations 

discussed in this paper. 

 

3. Control Simulations 

 

The control simulation used to drive the MM5 corresponds to climate conditions that are 

in transition to equilibrium with the CO2 and sulfate aerosol forcings of 1995. As such, 

the simulation cannot be compared directly with historical climate conditions. 

Nevertheless we find that, for the western U.S., the first 20 years of the control 

simulation do not differ greatly from the PCM historical simulation of 1975-1995. This is 

illustrated in Figure 2, which shows the annual mean temperature and precipitation 

averaged over the CRB and SSJ basin for the control and historical simulations. The 

mean annual temperature and precipitation of the control simulation (1995-2015) are well 

within 0.3oC and 15% of the historical simulation (1975-1995) in many areas within the 

CRB and SSJ basin. In what follows, we will compare the PCM and MM5 control 

simulations directly with observations of the past 20 years as an indication of model 

performance. 

 Figures 3 and 4 show the spatial distributions of seasonal mean temperature and 

precipitation as observed and simulated by PCM and MM5. Observations were based on 

a 1/8o gridded dataset for 1980-2000 derived from station data using the method 

described by Maurer et al. (2001). Spatial interpolation was performed based on the 

statistical topography-precipitation relationships developed by Daly et al. (1994) to 

account for orographic precipitation in the western U.S. The PCM simulation was 
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bilinearly interpolated from the PCM grid to the MM5 nested grid for this comparison. 

During winter, the PCM simulated precipitation shows a gradual reduction in 

precipitation from the Pacific coast inland. The RCM simulation depicts a much more 

realistic spatial distribution of cold season precipitation than the PCM simulation in the 

western U.S. The simulation clearly distinguishes the regional maxima related to coastal 

mountains (e.g., the Olympic Mountain) and the Cascades and Sierra Ranges. Similar to 

the observations, secondary peaks are also found over the Northern Rockies, the Wasatch 

Range, and the Colorado Plateau. The RCM precipitation was generally more widespread 

than the observations. The regional control simulation is surprisingly similar to the 

regional simulation driven by 20 years of NCEP/NCAR reanalyses shown in Figure 2 of 

Leung et al. (2002a).  

 During the warm season, the PCM simulation shows a strong precipitation 

maximum over the central Rockies that extends northward across the U.S.-Canada 

border. In the regional simulation, the precipitation maximum was totally removed and 

the spatial distribution became more realistic compared to the observed pattern. The large 

differences between the PCM and RCM simulated precipitation during summer were 

related in part to the different convection schemes used in the models. Negative biases 

occurred along northwest mountains and in the southwest monsoon region. For surface 

temperature, both the PCM and RCM simulations reproduced the observed temperature 

rather well, with the latter capturing more realistically the spatial distribution affected by 

topographic features. Biases between the simulated and observed temperature were 

generally within 3oC.  
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Figure 5 shows the mean annual cycle of temperature and precipitation from 

observations and the PCM and RCM control simulation averaged over CRB and SSJ. In 

CRB, the simulated seasonal cycles of temperature were very close to the observed 

except during spring (February – May) where cold biases of up to 5oC occurred. In SSJ, 

there were cold biases during winter and warm biases during summer that were within 

4oC. At the larger scales such as the entire CRB and SSJ basin, the downscaled 

simulation was within 2oC of the PCM simulation. For precipitation, the seasonal cycle 

was well represented in CRB by the PCM and RCM simulations. However, in SSJ, the 

RCM produced much more precipitation between January and March than the PCM 

simulation and the observation. The cold season wet biases were generally less than 50%.  

 

4. Climate Change Signals 

 

The following analyses were based on results from the global (PCM) and regional 

(MM5) climate simulations. Climate change signals were calculated as the differences 

between ensemble means of the three future climate simulations between 2040-2060 and 

the 20-year control simulation. This paper focuses on changes in the hydrologic cycle that 

affect water resources in the western U.S.  

 

4.1. TEMPERATURE 

Figure 6 shows the seasonal mean signals in surface air temperature over the western 

U.S. as simulated by PCM and MM5. Surface air temperature from MM5 was calculated 

based on a simple weighting of surface skin temperature and air temperature at the 
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model’s lowest level (near 40 m) following Dickinson et al. (1986). In PCM, surface air 

temperature was estimated at the reference height of 2 meters over land and 10 meters 

over ocean. During summer the warming was between 1.5 - 2oC and stronger inland. In 

the RCM during winter, the warming was stronger along coastal mountains such as the 

Cascades and the Sierra, and on the northern latitudes. This warming is consistent with 

reduced snow-albedo feedback effects along the coastal mountains because less snow is 

accumulated under the greenhouse warming scenario. In the PCM, stronger warming is 

found over the Rockies in the winter, which is also consistent with reduced snow-albedo 

effects because the PCM only resolved topographic features and snow in the Rockies and 

not the narrow coastal ranges. Because the RCM simulated snow cover was much more 

realistic than the PCM, the spatial pattern of temperature change simulated by the RCM 

could arguably be more realistic. Similar spatial patterns of temperature change were also 

found for spring (not shown) when snow effects were apparent. The temperature signals 

were statistically significant at the 0.95 confidence level based on a two-tailed t-test for 

all seasons and regions. Temperature change was generally less in the downscaled 

scenarios than the PCM scenarios. 

 To further investigate the change in temperature, Figure 7 shows the frequency 

distribution of daily mean surface temperature for six regions shown in Figure 1 based on 

the control and future RCM simulations. During winter, there was a clear asymmetry in 

the frequency distributions, especially in regions 1 to 4, showing negative skewness with 

long tails at the lower ends. In the future climate, the negative skewness increased such 

that warming on the higher ends or warm days was less than warming on the lower ends 

or cold days. The change in the 95th percentile daily mean temperature was found to be 1 
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to 2oC lower than that in the 5th percentile in most places. The frequency distributions of 

daily mean temperature during summer were typically narrower and had shorter tails than 

winter. Similar to changes found in winter, there was also a tendency for increased 

negative skewness in the future climate. Greenhouse warming therefore brings milder 

conditions in the western U.S. to extreme low temperature and only moderately increases 

extreme high temperature. 

 Figure 8 shows the diurnal temperature range (DTR) for the six regions based on 

the RCM simulations. During winter, the simulations showed a positive skewness in DTR 

in the Northwest (regions 1, 2, and 3). In those areas, there was a higher frequency of 

small DTR corresponding to frequent cloudy days. This tendency and the physical 

constraint for DTR to be above zero led to the positively skewed distribution. Large DTR 

values between 20 to 25oC were more likely a result of frontal passage causing significant 

temperature drop than radiation effect which was limited during winter at the higher 

latitudes. There was a small tendency of increased positive skewness or a shift in the peak 

towards lower DTR in the future. In regions 4, 5, and 6, DTR had a much broader, more 

symmetrical and near bimodal distribution. The bimodal feature could be related to 

bimodal distribution of cloudiness that depended on the location of the jet stream and 

frequency of frontal passage. Clearly the Southwest was marked by higher frequency of 

larger DTR that corresponded to clear days than other regions. Under climate change, 

there was a reduction in the frequency of the first peak at the lower DTR range and an 

increase in the frequency of the second peak at the higher DTR range, suggesting 

increased frequency of clear days. The latter was consistent with reduced precipitation in 

those regions. 
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During summer, the distribution of DTR in the Northwest  (regions 1, 2, and 3) 

became less positively skewed and more Gaussian like. There was a shift towards slightly 

larger DTR in the future than the control. The distributions of DTR in regions 4, 5, and 6 

went through a large transition from winter to summer. Instead of the broader or bimodal 

distribution found during winter, the summer DTR distribution was negatively skewed 

and more concentrated over a certain range. The negative skewness was related to the 

upper physical constraint determined by clear sky radiation heating or cooling. Similar to 

the Northwest, there was a tendency of shift towards larger DTR in the future climate, 

suggesting increased frequency of clear days. 

 

4.2. MEAN AND EXTREME PRECIPITATION 

Figure 9 shows the ensemble mean changes in seasonal mean precipitation based on the 

PCM and RCM simulations. During the cold season, precipitation in the western U.S. 

was mainly driven by large-scale circulation bringing in abundant moisture from the 

Pacific Ocean. In the downscaling procedure, the RCM correctly preserved the PCM 

large-scale features, showing wetter conditions in the northeastern side of the domain and 

drying trend near the Pacific coast that were comparable to the characteristics of the PCM 

signal. Differences between the PCM and RCM spatial patterns at the regional scale such 

as the much stronger drying trend along coastal mountains were caused by mesoscale 

forcings such as topography. Leung et al. (2002b) showed that because of its ability to 

resolve the interactions between large-scale circulation and orography, the RCM captured 

realistic mesoscale precipitation anomaly patterns related to large-scale circulation 

anomaly during the warm phase of the El Nino-Southern Oscillation. One may therefore 
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argue that the RCM also produced more realistic cold season regional precipitation 

changes that were consistent with the large-scale circulation change produced by the 

PCM under climate change. During the warm season, precipitation was less dependent on 

large-scale circulation and differences between the spatial distributions of the PCM and 

RCM precipitation signals were more likely related to differences between the physics 

parameterizations used in the models than regional forcings.   

Based on Figure 9, precipitation changes were generally less than 1 mm/day for 

all seasons. Larger changes were found during the cold season in northern California and 

along the coast of British Columbia. The drying in California projected by the PCM and 

RCM in this study should be contrasted with the wet trend based on the Hadley Centre 

Model and Canadian Model reported in the National Assessment Report (2000). 

However, because of strong variability, most changes shown here were not statistically 

significant at the 0.9 confidence level based on a two-tailed t-test performed for each grid 

cell except for the drying trend during summer, the wetter conditions over the Northern 

Rockies during fall and winter, and the drying trend in the Great Basin during spring (not 

shown). Strong variability in precipitation was reflected in large differences in the spatial 

distribution of precipitation signals among ensemble members and between each 10-year 

period (2040-2050 versus 2050-2060) (not shown). That is, depending on which 

ensemble simulation and which 10-year period was analyzed, the simulated precipitation 

changes were highly variable spatially. We conclude that results based on shorter 

simulations or a single simulation are somewhat misleading in defining the precipitation 

signal under greenhouse warming in the western U.S.  
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 Changes in the 95th percentile extreme daily precipitation based on MM5 

simulations are shown in Figure 10 for the summer and winter seasons. Extreme 

precipitation was calculated based on simulated daily precipitation excluding no rain days 

with precipitation amount less than 0.01 mm/day. During winter, extreme daily 

precipitation increased by up to 10 mm/day at the Cascades and Sierra. This corresponds 

to 15-25% increase in those areas. There were also increases between 15-30% 

extensively over the Northern Rockies. Combined with existing snow conditions in these 

mountainous areas, enhanced extreme precipitation can increase the severity of 

wintertime flooding corresponding to rain on snow events. During summer, extreme 

precipitation was reduced along the Sierra, southern California, and coastal region of 

Oregon by 3-20 mm/day, which corresponds to reductions of 25-35%. Extreme 

precipitation was increased in the British Columbia by 10-25%. During both seasons, 

there was a small increase in the number of no rain days (using a threshold of 0.01 

mm/day) over most of the western U.S. by mid-century. 

 

4.3. SNOWPACK AND RUNOFF 

A robust feature of the climate change signal in the western U.S. was the reduction in 

mountain snowpack caused mainly by warmer temperatures projected for the future. 

Figure 11 shows the absolute and percentage changes in annual snowpack in the western 

U.S. simulated by PCM and MM5. Annually significant reductions in snowpack were 

found along the Cascades, the Sierra, and the Northern Rockies by 10-100 mm. 

Percentage changes were largest along the coastal ranges where snowpack was reduced 

by 60-70% compared with 20% reduction in the Northern Rockies. The spatial 
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distribution of snowpack changes was more realistically simulated in mountain regions 

by MM5 than PCM, mainly because PCM did not resolve coastal mountains and 

consequently, it could not produce realistic precipitation and snowpack associated with 

the orography.  

As discussed by Leung and Ghan (1999b), the big contrast in snowpack reduction 

along coastal mountains versus inland mountains was due to differences in cold season 

temperature between the maritime and continental climate. Warming of 1-2oC can reduce 

snowpack significantly along the Cascades and Sierra where winter temperatures are 

typically close to freezing. In the Northern Rockies, the same warming will probably 

have a much smaller effect because winter temperatures are normally much below 

freezing. Because of snow-albedo feedback effects, the larger reduction in snowpack 

along coastal mountains was reflected in stronger warming during the cold season than 

that over inland mountain (see Figure 6). During March (not shown) large reductions of 

70% were found over most of the western U.S. except for the central and Northern 

Rockies.  

 In the western U.S., impacts of climate change on water resources depend not 

only on separate mean changes in temperature and precipitation. The change in the joint 

distribution of temperature and precipitation is also of hydrological significance. For 

example, increase in precipitation in regions with larger warming (such as along coastal 

mountains because of snow-albedo feedback) will have effects different from 

precipitation increase in regions with moderate warming because temperature affects the 

phase of precipitation and snow accumulation at the surface. In Table 2, we show the 

basin-mean changes of other variables as a result of changes in temperature and 
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precipitation. There are large changes in mean and extreme precipitation and runoff, 

precipitation frequency and intensity, snowfall, and rain-on-snow events; the latter is a 

main cause of winter floods in the Northwest and northern California. A threshold of 0.01 

mm/day was used to define rain days for calculating precipitation frequency and 

intensity. Snowfall and rain-on-snow events were determined using 3-hourly surface 

temperature and precipitation data where a threshold of 0oC is used to distinguish rainfall 

from snowfall. Rain-on-snow events occurred when rainfall (> 0.01 mm/day) happened 

with existing snowpack. Rain-on-snow amount was calculated as the averaged amount of 

rainfall during rain-on-snow events, and the frequency of rain-on-snow events was 

calculated as the number of rain-on-snow events over the total number of three-hour 

periods used in the estimation.  

Table 2 shows that percentage changes in seasonal mean precipitation were very 

small except for June-July-August (JJA) where precipitation was reduced by more than 

20%. Although mean precipitation and precipitation frequency were typically reduced 

during the cold season, the 95th percentile extreme daily precipitation and mean 

precipitation intensity were generally increased. This suggests a shift in the probability 

distribution towards more intense precipitation during winter under future climate. 

Furthermore, although changes in precipitation were small, the warming signal 

significantly lowered the proportion of snowfall in the total precipitation in the CRB 

(reduced by 20%) and SSJ basin (reduced by 30%) to reduce snow accumulation. In the 

control climate, about 50-70% and 20% of precipitation were snowfall respectively in the 

CRB and SSJ basin between December and May.  
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In terms of runoff, there was an increase of 40% during December-January-

February (DJF) and reduction of 28% during March-April-May (MAM) in the CRB. The 

increase in the proportion of rainfall over snowfall and rain-on-snow events were 

responsible for the larger runoff during winter. In the control simulation, about 12% of 

precipitation fell during rain-on-snow events in the CRB. With an increase in the 

frequency of rain-on-snow events by about 10% throughout the winter in the CRB, more 

rapid snowmelt can result. This was reflected in 11% increase in the 95th percentile 

extreme runoff shown in Table 2.  

In the SSJ basin, the reduction in snowfall is even more severe. There was a 

reduction of more than 30% throughout the cold season because of warmer temperatures. 

In the control simulation, only about 4% of precipitation fell during rain-on-snow events. 

Unlike the CRB, the frequency of rain-on-snow in the future climate was reduced 

because the probability of finding snowpack on the ground was greatly reduced. Still, 

runoff was enhanced during the winter because increasing rainfall over snowfall 

contributed directly to runoff. During spring, runoff was reduced by 7% because of 

reduced snowmelt. The 95th percentile extreme daily runoff was increased by 43% in 

September-October-November (SON) and 14% in DJF. While climate change impacts on 

cold season floods were stronger during DJF in the CRB, more significant impacts were 

found during SON in the SSJ basin. In both basins, climate change had negative impacts 

on water supply during spring and summer. 

 

4.4. SURFACE ENERGY AND WATER BUDGETS 
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Accompanied by changes in temperature and precipitation are changes in all components 

of the surface energy and water budgets. To illustrate changes in the seasonal cycle of the 

energy and water partition, we calculated the CRB and SSJ basin mean monthly changes 

of precipitation, total runoff, evapotranspiration, and soil moisture and snowpack 

accumulation for the surface water budget. For the surface energy budget, we calculated 

the sensible and latent heat flux and net shortwave and longwave radiation at the surface. 

Figure 12 shows the changes in the components of the surface water budget under 

greenhouse warming by mid-century.  

 In the CRB, precipitation changes were small throughout the seasonal cycle. This 

suggests that changes in other components of the water budget were mostly driven by 

changes in temperature rather than precipitation. As a result of warming, there were 

significant reductions in snowpack between December and May, which were reflected in 

reduced snow accumulation between November and February and less snow melt 

between March and May in Figure 12. Note that snow accumulation rate (SP) is denoted 

positive and snowmelt is negative. In snow-dominated basin such as CRB, changes in 

runoff reflect the changes in both precipitation and snow accumulation or melt. 

Therefore, while changes in runoff and precipitation should be similar on an annual basis, 

they can differ on a monthly basis. As shown in Figure 12, runoff increases during 

January and March occurred because in the warmer climate more precipitation came in 

the form of rain rather than snow. By contributing directly to runoff or by causing 

snowmelt, a higher percentage of rainfall versus snowfall during the cold season 

increased runoff. As less snow was accumulated during winter, runoff as a result of 

snowmelt between April and June was reduced. Changes in runoff were also reflected in 
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a shift in peak runoff from May to April in the future climate scenarios as a result of 

earlier snowmelt. Changes in soil moisture followed a pattern similar to the runoff. 

During winter, increased rainfall and runoff enhanced soil moisture. Between May and 

November, soil moisture accumulation was reduced because of reduced snowmelt and 

increased evapotranspiration caused by warmer temperatures.  

 In the SSJ basin, precipitation changes were larger during the cold season than 

that in the CRB. However the signs of the changes were not consistent throughout winter. 

Because of warmer temperature in the future scenarios, snowpack was also reduced in the 

SSJ basin although it was not as significant as in the CRB. Runoff changes responded 

more directly to changes in precipitation in a warmer climate regime. Nevertheless the 

effects of warming on the rain versus snow were also reflected in increased runoff 

between December and January even though precipitation changes were negative. There 

was also a shift in peak runoff from March in the control simulation to February in the 

future climate conditions as a result of earlier snowmelt. Soil moisture was basically 

reduced throughout the year except in November. These reductions were caused by a 

warmer climate, which also could enhance evapotranspiration despite larger runoff 

during January and February. 

 Figure 13 shows the changes in surface energy budget in the two river basins. In 

both basins, net shortwave radiation at the surface was mainly balanced by sensible heat 

flux and net longwave radiation during summer and latent heat flux and net longwave 

radiation during winter. Under the future climate scenarios, changes in each component 

of the surface energy budget were rather small. During winter, net shortwave radiation 

increased perhaps as reduced snow accumulation lowered the surface albedo. Sensible 
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heat flux, latent heat flux and net longwave radiation all decreased by 1 – 3 W/m2. During 

summer, sensible heat flux increased by 4 – 8 W/m2 in response to the warmer 

temperature. Changes in other surface energy components were less clear because their 

magnitudes were small and changes in sign were often different during the year. 

Table 3 summarizes the changes in surface energy and water budgets in the PCM 

and MM5 climate change simulations averaged over the CRB and SSJ basin. A 

comparison of the changes at the larger scale of the PCM and the regional scale of the 

MM5 revealed the importance of downscaling in simulating impacts on water resources 

in the western U.S. Although differences between the basin-mean temperature and 

precipitation changes simulated by PCM and MM5 were relatively small, much larger 

differences were found in snowpack and runoff simulated by the two models. The PCM 

simulated changes in snowpack were much smaller than that of the MM5, and the 

difference is larger in SSJ than CRB.  

Differences between the PCM and MM5 results occurred because of differences 

in land surface parameterizations used in the global and regional models and differences 

in spatial resolutions. The impacts of the former are more difficult to assess. For the 

latter, at higher spatial resolution, MM5 was able to simulate more realistically the spatial 

distributions of temperature and precipitation that were strongly affected by the complex 

topography of the western U.S. Other energy and water components such as snow and 

runoff were redistributed spatially in response to changes in these quantities. Because of 

nonlinear processes in land surface energy and water exchange, even basin-mean changes 

in surface energy and water budgets can become significantly different for models 
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applied at different spatial resolutions. Downscaling therefore ensures more realistic 

climate sensitivity to be simulated for the surface water and energy budgets. 

 

4.5. UNCERTAINTY BASED ON ENSEMBLE SIMULATIONS 

Because of computational constraints, most climate change studies in the past have relied 

on single realizations. In this study, three ensemble simulations were performed using 

both the global and regional models to obtain projections of future climate. Figure 14 

shows the annual mean temperature and precipitation based on the three PCM climate 

change simulations in the CRB and SSJ basin for 1995-2100. There was large interannual 

variability simulated by the model for the western U.S. For surface temperature, the 

standard deviation of the annual mean temperature was about 1-1.5oC and was larger in 

the CRB than SSJ basin. All three simulations followed a similar linear trend in 

temperature rise as CO2 increases throughout the simulation period. For precipitation, the 

ratio of the standard deviation to the mean of the annual mean was larger in the SSJ basin 

(60%) than the CRB (25%). A similar variation occurred for temperature and 

precipitation variability in the CRB and SSJ basin in historical records (i.e., temperature 

variability is larger in the CRB but precipitation variability is larger in the SSJ basin; see 

e.g. Leung et al. 2002b). There was almost no linear trend in precipitation, although 

interannual variability did appear to increase during the mid-century in the SSJ basin.  

Based on Figure 14, it appeared that differences among ensemble simulations 

were small compared to the strong interannual variability simulated by the model. Figure 

15 shows the temperature and precipitation signals averaged over the CRB and SSJ basin 

based on each member of the ensemble regional simulation. Each curve represents the 
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mean signal calculated based on the difference between the mean monthly temperature or 

precipitation averaged over 20 years of each future (2040-2060) and the control 

simulation. The standard deviation of each mean signal was calculated based on the 

square root of the sum of variance of the mean monthly temperature or precipitation for 

each future simulation and the control simulation. It represents the standard deviation of 

the mean climate signal for each pair of ensemble control and future simulations.  

Differences among mean monthly warming signals based on each ensemble 

simulation were 0.25–1.0oC, which were about 10-40% of the ensemble mean. Generally 

each mean monthly signal fell within the standard deviation of the mean monthly signal 

based on other members of the ensemble simulation for the same month. This suggests 

that variability among ensemble members were within the variability captured by 20 

years of a single simulation. Precipitation differences were between 0-0.5 mm/day in the 

CRB and 0-1.5 mm/day in the SSJ basin, which were between 0-200% of the ensemble 

means. Again these differences were generally within the standard deviations of each 

ensemble run. Exceptions occurred during winter and spring (e.g., January and March 

through May in the CRB and March and April in the SSJ basin) where ensemble 

differences exceeded the standard deviations. Larger ensemble sizes will be needed to 

better characterize uncertainty in the precipitation signals.  

Figure 16 shows the signal-to-noise ratio of the cold season mean temperature and 

precipitation based on the PCM and RCM simulations. The RCM signal-to-noise was 

consistent with that of PCM at the larger scale. Although the RCM simulations showed 

more structures in climate signals such as the stronger warming and precipitation changes 

along the Cascades and Sierra at the regional scale, the magnitude of the signal-to-noise 
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ratio was not significantly different from that of PCM. This is because climate variability 

was large along the Cascades and Sierra where the signals were large. This suggests that 

in this region of complex terrain, regional forcings amplified both climate change signals 

and climate variability. As a result, predictability of climate change signals was neither 

improved nor degraded by the orography. 

 

4.6. UNCERTAINTY BASED ON TWO SETS OF DOWNSCALING EXPERIMENT 

To extend the characterization of uncertainty in climate projections, the ACPI pilot 

project included the NCEP Regional Spectral Model (RSM) for downscaling of the PCM 

climate change simulations. However, the RSM simulations were performed using a 

different set of PCM simulations, as described in 2.2 and Table 1. Therefore a detailed 

comparison of the RSM and MM5 climate change signals is difficult because: (1) they 

are not based on the same PCM simulations; (2) they are not of the same length and 

ensemble size; and (3) there are differences between RSM and MM5 in terms of 

dynamical and physical representations, model domain, and spatial resolution (Leung et 

al. 2002c). Nevertheless, a comparison of the MM5 and RSM scenarios for the same 

region and time period can provide a broader perspective on uncertainty of climate 

projections for the western U.S.   

Before we investigate the differences between the MM5 and RSM climate change 

signals, it is useful to summarize what differences might be expected from results based 

on these models. Leung et al. (2002c) noted a large difference in the spatial distribution 

of cold season precipitation between MM5 and RSM simulations driven by global 

reanalyses. Because RSM uses a spectral representation, topography is more strongly 
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smoothed compared with MM5 even at similar spatial resolutions. Topographic features 

such as the Cascades and Sierra were not well resolved by RSM. As a result, MM5 

produced stronger orographic precipitation in the Cascades, the Sierra, and northern 

Rockies, and RSM generated more precipitation along the low-lying coastal area instead. 

During summer, RSM produced more precipitation in the northern Rockies than MM5. 

These differences in precipitation simulations were found to be associated more with 

differences in physics parameterizations, model formulations, and topographic 

representations between RSM and MM5 than the driving large-scale conditions.  

Figure 17 shows the temperature and precipitation signals simulated by RSM 

based on the difference between 2040-2050 and 1986-1996. A comparison of Figure 17 

with the climate change signals simulated by MM5 (Figures 6 & 8) shows some 

interesting differences in spatial characteristics between the RSM and MM5 climate 

signals. For temperature, the MM5 signals showed stronger warming along the Cascades 

and the Sierra during winter due to snow-albedo feedback effects. Such enhanced 

warming was not found in the RSM simulations. For precipitation, the MM5 winter 

signals again displayed more spatial structures related to topography of the coastal 

mountains than the RSM signals. During summer, changes in the RSM were generally 

larger, especially over the northern Rockies. Note that these differences were not related 

to the difference in time periods (2040-2050 in the RSM versus 2040-2060 in the MM5) 

or ensemble sizes (one in RSM versus three in MM5) because similar differences were 

found comparing each MM5 ensemble simulation with the RSM simulation for the same 

period. They are mainly related to differences in topography and physical 

parameterizations used in the models, which affect the simulations of orographic and 
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convective precipitation and their interactions with other processes. Both RSM and MM5 

showed little areas with precipitation signals at or higher than 95% confidence level 

during winter. During summer, both showed more extensive areas with significant 

increase in precipitation, although the RSM signals were generally much larger. For 

temperature, the lack of statistical significance in the RSM signals is partly related to the 

shorter simulation period and weaker warming during winter.  

Figure 18 shows the CRB and SSJ basin mean climate change signals in surface 

temperature and precipitation based on the RSM and MM5 simulations. Climate change 

signals for the RSM simulations were calculated simply by differencing the monthly 

temperature or precipitation averaged over 10 years of the future and control simulations. 

The climate change signals are all shown for the same period in the future (2040-2050). 

Results from PCM are shown in black and those of MM5 and RSM are shown in grey 

using the same line pattern for each pair of PCM and regional simulation.  

Based on the simulated temperature signals, several general observations can be 

made. First, during the warm season, the downscaled monthly signals were typically 

smaller than that of the PCM by up to 1oC. Second, averaging over the annual cycle, the 

difference between the PCM and downscaled temperature signals was very small for the 

PCM-MM5 experiments; for the PCM-RSM experiment, the downscaled signal was up to 

0.53oC or 43% colder than the PCM signal. Third, because the mean monthly signals 

were calculated based on only 10 years rather than 20 years, differences among ensemble 

members were larger than those in Figure 14. Fourth, because of strong interannual 

variability and low PCM climate sensitivity, mean monthly signals were sometime 

negative (cooling) or near zero if only 10 years of an earlier period (2040-2050 rather 
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than 2050-2060) were used in the estimation. Lastly the PCM-RSM experiment exhibited 

the mildest warming of all experiments.  

 Changes in mean monthly precipitation were usually very small. Figure 18 shows 

that differences among simulations were especially large during November to January in 

the CRB and December to February in the SSJ basin. The precipitation signals could be 

positive or negative depending on which pair of PCM and downscaling experiment was 

used. These levels of uncertainty could be overcome by extending the time period or 

increasing the number of simulations. Similar to temperature signals, the difference 

between PCM and downscaled precipitation signals were usually larger for the PCM-

RSM pair than the PCM-MM5 pairs. However, all regional models amplify the 

precipitation signals from the PCM as a result of strong topographic forcings within the 

basins. 

 Further differences among the four downscaling experiments are seen in the 

spatial distribution of changes in March snowpack simulated by each MM5 and RSM 

experiment for 2040-2050 (not shown). Because snowpack is highly sensitive to 

temperature and precipitation, small differences among the ensemble MM5 and RSM 

projections can result in large differences in projecting snowpack changes. Along the 

Cascades and the Sierra, reductions in March snowpack were most significant (over 100 

mm or 80%) for MM5 simulations 1 and 2, where temperature changes during the cold 

season were stronger than other simulations. The spatial distributions of the change were 

similar among the MM5 simulations. In the RSM simulation, reductions in snowpack 

were not only smaller, they were distributed mainly in the Northern Rockies rather than 

along coastal mountains. Because RSM produced less orographic precipitation than MM5 
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as discussed above, it simulated two to ten times less snowpack than MM5 on the 

Cascades and the Sierra. Therefore, depending on the climate projections based on 

different sets of models and numerical experiments, climate change effects on water 

resources in the western U.S. can vary strongly in terms of magnitude and spatial 

distribution, despite general agreements in the directions of the trends. 

 

5. Conclusions 

 

This paper described dynamical downscaling of ensemble global simulations of 

present and future climate conditions. Because of the complex topography and diverse 

climate regimes, downscaling was shown to be important for realistically capturing 

regional climate in the western U.S. (e.g., Leung et al. 2002a). Comparing the PCM and 

MM5 control simulations, spatial distributions of precipitation, temperature, and 

snowpack were much more realistically simulated at the higher spatial resolutions in the 

regional models. Downscaling did not significantly alter regional mean changes in 

temperature and precipitation. Nevertheless differences between the spatial distributions 

of temperature and precipitation signals in the global and regional simulations were 

sufficient to induce large differences between the PCM and MM5 basin-mean surface 

energy and water budgets in mountainous basins.  

At higher spatial resolution, changes in snowpack and runoff were much larger in 

the regional simulations than the PCM simulations where coastal mountains such as the 

Cascades and the Sierra were not resolved. We found that snow-albedo feedback effect 

could cause a stronger regional warming over coastal mountains. Such elevation 
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dependence in temperature signals has been described in previous regional studies of 

climate change effects (e.g., Giorgi et al. 1997; Leung and Ghan 1999b; Kim 2001). 

There were a few significant changes that seem to be robust among the ensemble 

simulations. First, as a result of warming by mid-century, which was statistically 

significant at the 0.95 confidence level over most of the western U.S., more precipitation 

fell in the form of rain than snow (10 to 20% reduction in snowfall in the CRB and over 

30% reduction in the SSJ basin). This reduction in snowfall together with increased 

snowmelt due to warmer temperature acted to reduce snowpack accumulation during 

winter in the basins. At the same time, an increased proportion of rainfall over snowfall 

and increased snowmelt due to warmer temperatures contributed directly to increased 

runoff. In the CRB, this was exacerbated by an increase of over 10% in rain-on-snow 

events that caused rapid snowmelt. During spring and early summer, runoff was reduced 

because of reduced snowpack in the mountain. Changes in runoff were therefore 

manifested in a large seasonal shift in runoff pattern that increased vulnerability to winter 

floods and summer droughts. Increase in extreme cold season precipitation and rain-on-

snow events were also responsible for higher frequency of winter floods, which was 

reflected in an increase in the 95th percentile of extreme daily runoff. 

There were distinct differences between the two basins studied. In particular, in 

the CRB, the suite of changes described above was driven mainly by the warming signal. 

In the SSJ basin, which is a warmer basin, impacts on water resources were also 

dependent on changes in precipitation that more often fell in the form of rain in both the 

control and future climate. As a result, changes in runoff in the SSJ basin responded more 

directly to precipitation changes.  
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Climate induced changes in snowpack and runoff will have important impacts on 

managing water resources for flood control, hydropower production, and irrigation 

supply in both basins. The situation is further complicated by the potentially reduced soil 

moisture that may increase irrigation demand and the potential for wild fires during 

summer.  

Our estimation of these effects was based on climate change scenarios that were 

driven mainly by temperature rather than precipitation changes, especially in the CRB. 

Given that temperature changes are more certain than precipitation changes, and that the 

PCM projected temperature changes are on the low end compared with projections based 

on other climate models (e.g., Mote et al. 1999; Barnett et al. 2001; Cubasch et al. 2001; 

Miller et al. 2002), our estimated impacts on water resources and agriculture could be 

small in comparison to other studies. Still the potential impacts and implications for 

resource management in the future are worthy of further study. 

How uncertain are these projections of climate change impacts? This study 

investigated this issue in part by using ensemble simulations of a GCM and an RCM. If 

climate signals were estimated from 20-year simulations, our results show that mean 

monthly climate signals derived from each ensemble simulation were mostly within the 

standard deviation of the mean monthly signals. If only 10 years of simulation were used, 

differences among ensemble simulations became larger, especially for spatial distribution 

of precipitation signals. This suggests a larger ensemble size is necessary for a shorter 

time. 

This study further compared ensemble climate change signals based on three 

PCM-MM5 downscaling experiments with another experiment that uses different 
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procedures to generate PCM simulation (historical simulation that starts in 1870 versus 

initialization with assimilated ocean data of 1995) and downscaling with the RSM model. 

In all of these experiments, downscaling reduced the warming signal during summer and 

amplified the precipitation signal of PCM. Although RSM simulations were performed 

using a perturbation method where large scale fields are nudged towards that of the PCM 

at all grid points in the domain, differences between PCM and RSM signals were larger 

than that between PCM and MM5, which suggest that other features, such as physical 

parameterization differences, were more important. On an annual basis, one cannot 

distinguish the PCM-RSM signals from those of the PCM-MM5 experiments. On a 

monthly basis, the signals calculated based on PCM/RSM were more different from 

PCM/MM5 than individual differences among each pair of ensemble PCM-MM5 

experiment. This suggests that physical parameterization differences may be equally or 

more important than spatial resolution, especially concerning hydroclimate conditions. 

However differences between the RSM and MM5 simulations were also related to many 

other differences in the experiment setup. Further investigations of the various factors 

contributing to uncertainty in model projections of regional climate change will require 

improved experimental design and coordinated efforts.   

To estimate the uncertainty associated with climate change signals, a large suite 

of experiments is required to encompass all possible differences in the emission 

scenarios, global climate models, downscaling techniques, and experimental details such 

as initialization of the atmosphere-ocean GCMs and ways to generate ensembles of GCM 

and downscaled simulations. When ensemble simulation is applied to downscaling, such 

a technique may include multiple simulations using one model driven by ensemble global 
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simulations, use of multiple regional models, and use of ensemble global simulations 

based on multiple global models. These techniques need to be further explored to provide 

estimates of uncertainty in climate change signals. 

Last, our study, which is based on ensembles of 20-year global and regional 

simulations, suggests that there is little difference between the signal-to-noise ratios at the 

regional and global scales (Figure 16). Although climate change signals were generally 

amplified at the regional scales mainly because of orographic effects, increases in climate 

variability (or noise) also displayed similar spatial characteristics. This suggests that it 

may not be necessary to increase the ensemble size to increase the signal-to-noise ratio 

for climate detection at the regional scales. Similarly, the elevated warming signals in 

mountainous regions do not necessarily imply an increased signal-to-noise ratio (hence 

earlier detection) because of enhanced variability. Clearly, more work is required on 

regional climate predictability to establish the validity of these conclusions. 
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TABLE CAPTION 

 

Table 1. A summary of global and regional climate models and characteristics of 

simulations used in this study. 

Table 2. Changes in seasonal mean and 95th percentile precipitation (P), mean and 95th 

percentile runoff (R), precipitation intensity and frequency, snowfall, amount of 

rainfall in rain-on-snow events, and frequency of rain-on-snow events based on 

ensemble average of MM5 simulations for each season (December – February, DJF; 

March – May, MAM; June – August, JJA; and September – November, SON) in the 

CRB and SSJ basins. 

Table 3. Annual and seasonal mean changes in precipitation (P), temperature (T), snow 

water equivalent (S), runoff (R), sensible heat flux (SH), latent heat flux (LH), net 

shortwave radiation (SW), and net longwave radiation (LW) based on ensemble mean 

PCM and MM5 simulations of future (2040-2060) and control (1995-2015) climate 

averaged over the Columbia River Basin (CRB) and Sacramento-San Joaquin (SSJ) 

Basin. 
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FIGURE CAPTION 

 

Figure 1. Nested domain at 40 km spatial resolution used in the regional climate model. 

Shown in the figure are the grid locations of the PCM (large dots) and MM5 (small 

dots), contours of elevation defined in the MM5, outlines of the Columbia River 

Basin (CRB) and Sacramento-San Joaquin (SSJ) Basin boundaries, and locations of 

six regions used in the analysis of surface temperature of Figures 7 and 8. Each region 

occupied 4 RCM grid cells. 

Figure 2.  Annual mean temperature (oC) and precipitation (mm/day) averaged over the 

CRB and SSJ basin for the PCM historical simulation (1975-1995, solid lines) and 

control simulation (1995-2045, dash lines) respectively.  

Figure 3. Spatial distribution of seasonal mean surface temperature (oC) based on the 

PCM (top panel) and RCM (middle panel) control simulations and observations 

(bottom) for summer (left) and winter (right). 

Figure 4. Similar to Figure 3, but for seasonal mean precipitation in mm/day. 

Figure 5. Basin averaged monthly mean surface temperature (oC) and precipitation 

(mm/day) based on the PCM and RCM control simulations and observations. 

Figure 6. Spatial distribution of seasonal mean surface temperature changes (oC) based on 

differences between the PCM (top panel) and RCM (bottom panel) ensemble mean of 

the 2040-2060 climate conditions and the control simulation (1995-2015) for summer 

(JJA) and winter (DJF). Contours are for temperature change at an interval of 0.4oC. 

Areas with temperature change above the 0.95 confidence level are shaded in grey. 
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Figure 7. Frequency distributions of daily mean temperature in six regions shown in 

Figure 1 based on the RCM control and future climate simulations. Blue and red 

correspond to winter (DJF) and summer (JJA) values respectively, with solid curves 

representing the control simulation and dash curves the ensemble future simulations. 

The regions are located in (1) Cascades, (2) Columbia Basin, (3) Northern Rockies, 

(4) Sierra, (5) Intermountain West, and (6) Southwest respectively. 

Figure 8. Similar to Figure 7, but for frequency distribution of diurnal temperature range 

(DTR).  

Figure 9. Similar to Figure 6, but for precipitation changes in mm/day. Contour interval is 

0.3 mm/day. 

Figure 10. Changes in 95th percentile daily precipitation (mm) for summer and winter. 

Figure 11. Absolute (left) and percentage (right) changes in annual mean snowpack (mm) 

by mid-century compared with the control simulation based on the PCM (top) and 

MM5 (bottom) simulations. 

Figure 12. Changes in monthly mean surface water budget averaged over the CRB and 

SSJ basin. Shown in the figure are changes in precipitation (P), snowpack 

accumulation rate (SP), runoff (R), soil moisture accumulation rate (SM), and 

evapotranspiration (ET) in mm/day. 

Figure 13. Changes in monthly mean surface energy budget averaged over the CRB and 

SSJ basin. Shown in the figure are changes in sensible (SH) and latent (LH) heat 

fluxes and net shortwave (SW) and longwave (LW) radiation in W/m2. 

Figure 14. Basin mean annual temperature (oC) and precipitation (mm/day) based on 

three ensemble PCM simulations for 1995-2100 in the CRB and SSJ basin. 
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Figure 15. Basin mean monthly temperature and precipitation signals calculated as the 

difference between the 20-year (2040-2060) mean monthly temperature or 

precipitation based on each ensemble simulation and 20-year (1995-2015) of the 

control simulation averaged over the CRB and SSJ basin. Also shown in the figure 

are vertical bars showing the standard deviations of the mean monthly signals of each 

ensemble simulation.   

Figure 16. Signal-to-noise ratio for precipitation (left) and temperature (right) based on 

the PCM (upper) and MM5 (lower) simulations. 

Figure 17. Spatial distribution of seasonal mean surface temperature (oC) (upper) and 

precipitation (lower) changes (mm/day) based on differences between the RSM 

simulated 2040-2050 and 1986-1996 climate conditions for summer (JJA) and winter 

(DJF). Contours are at intervals of 0.4oC and 0.3 mm/day for temperature and 

precipitation changes respectively. Areas with changes above the 0.95 confidence 

level are shaded in grey. 

Figure 18. Basin mean monthly temperature and precipitation signals based on each PCM 

and downscaled simulation for 2040-2050. Curves shown in black are for PCM 

simulations and those shown in grey are for downscaled simulations. Each pair of 

black and grey curves having the same pattern corresponds to each set of three 

ensemble simulations performed with PCM (PCM 1, 2, and 3) and MM5 and one set 

of simulation performed with PCM (PCM 4) and RSM. Table 1 listed the differences 

between the MM5 and RSM numerical experiments.
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Table 1. 

Model PCM MM5 RSM 

Model 

Resolution 

T42; 18 vertical levels Nested 120km/40km; 23 vertical levels 50 km; 28 vertical levels 

Type of 

Simulation 

Control Historical Climate Change 

 

Control Climate Change Control Climate Change 

Simulation 

Period 

1995-2075 1870-2100 1995-2100 

 

1995-2015 2040-2060 1986-1996 2040-2050 

Number of 

Simulations/ 

Case 

Number 

1 

(B06.45) 

3 

(B06.30, B06.31, 

B06.32) 

3 

(B06.44, B06.46, 

B06.47) 

1 3 1 1 

Greenhouse 

Gases and 

Aerosol 

Forcing 

1995 CO2 and 

sulfate aerosol 

concentrations 

Historical CO2 and 

aerosol from 1870-

1996; business as 

usual scenario from 

1997 to 2100  

Business as usual 

scenario from 1995 

to 2100  

 

1995 CO2 

concentration (358 

ppmv) 

2040-2060 CO2 

concentration (~ 505 

ppmv) 

1986-1996 CO2 

concentration (~) 

2040-2050 CO2 

concentration (~) 

Initial 

Conditions 

Assimilated 1995 

ocean condition 

(Pierce et al. 2002) 

Three different 

initial atmospheric 

conditions for 1870 

Assimilated 1995 

ocean condition and 

3 different initial 

atmospheric 

conditions for 1995 

Based on PCM 

control simulation 

on July 1995 

Based on each of 3 

ensemble PCM 

climate change 

simulations on July 

2040 

Based on one PCM 

historical 

simulation on June 

1986 

Based on one PCM 

historical 

simulation on June 

2040 

Boundary 

Conditions 

   Based on PCM 

control simulation 

Based on each of 3 

ensemble PCM 

climate change 

simulations 

Based on one PCM 

historical 

simulation 

Based on one PCM 

historical 

simulation 
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Table 2.  

 

Basins CRB SSJ 

Seasons SON DJF MAM JJA SON DJF MAM JJA 

Mean P (mm/day) -0.19 (-7%) -0.02 (-1%) -0.01 (0%) -0.20 (-20%) 0.09 (7%) -0.24 (-4%) -0.26 (-10%) -0.08 (-27%) 

95% P (mm/day) 0.11 (1%) 1.05 (6%) 0.20 (2%) -1.10 (-12%) 2.36 (8%) 3.97 (9%) -1.19 (-4%) -3.33 (-32%) 

Mean R (mm/day) -0.01 (-20%) 0.02 (40%) -0.05 (-28%) 0.00 (0%) 0.02 (67%) 0.02 (6%) -0.03 (-20%) 0.00 (0%) 

95% R (mm/day) -0.07 (-9%) 0.08 (11%) -0.59 (-31%) -0.10 (-31%) 0.63 (43%) 0.61 (14%) -0.18 (-7%) -0.20 (-53%) 

P Intensity 

(mm/day) 

0.13 (2%) 0.34 (7%) 0.12 (4%) -0.24 (-10%) 0.97 (14%) 1.11 (9%) -0.22 (-3%) -0.73 (-24%) 

P Frequency (%) -4.78 (-10%) -4.95 (-7%) -2.67 (-4%) -4.95 (-13%) -0.97 (-5%) -5.43 (-12%) -2.55 (-7%) -1.92 (-19%) 

Snowfall (mm/day) -0.20 (-21%) -0.34 (-13%) -0.24 (-19%) -0.02 (-67%) -0.03 (-30%) -0.45 (-34%) -0.26 (-37%) 0.00 (0%) 

Rain-On-Snow 

Amount (mm/day) 

-0.06 (-11%) 0.12 (17%) 0.03 (14%) -0.01 (-50%) -0.01 (-13%) -0.15 (-17%) -0.05 (-24%) 0.00 (0%) 

Rain-On-Snow 

Frequency (%) 

-0.35 (-10%) 0.49 (10%) 0.11 (4%) -0.2 (-74%) -0.08 (-20%) -0.36 (-14%) -0.16 (-15%) -0.02 (-100%) 
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Table 3. 

  CRB SSJ 

 Model JJA DJF Annual JJA DJF Annual 

MM5 -0.20 -0.02 -0.10 -0.08 -0.24 -0.12 P (mm/day) 

PCM -0.09 0.00 -0.04 -0.04 -0.35 -0.08 

MM5 1.59 1.50 1.56 1.26 1.54 1.37 T (oC) 

PCM 1.78 1.83 1.65 1.32 1.31 1.34 

MM5 -0.07 -23.55 -15.41 0.00 -7.49 -4.10 S (mm) 

PCM -0.08 -18.60 -9.45 0.00 -0.67 -0.21 

MM5 -0.12 0.22 -0.08 -0.03 0.12 -0.09 R (mm/day) 

PCM -0.11 -0.08 -0.07 -0.28 -0.06 -0.15 

MM5 5.52 -1.29 1.01 4.45 -0.33 1.13 SH (W/m2) 

PCM 6.85 1.07 2.00 1.43 -0.68 -0.37 

MM5 -0.62 -1.41 -0.81 -1.97 -0.39 -0.40 LH (W/m2) 

PCM -1.34 -0.01 1.00 1.57 1.92 2.88 

MM5 -0.25 0.43 0.68 0.32 0.41 0.04 SW (W/m2) 

PCM 8.43 3.32 4.19 3.04 2.39 2.51 

MM5 0.12 -0.89 -0.70 0.06 -0.91 -0.10 LW (W/m2) 

PCM 4.05 1.21 1.63 -0.03 1.45 0.60 
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