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Abstract

This paper describes two variants of the Indian MARKAL model, a long-term technology
oriented optimisation model for energy-environment planning for India. The first variant uses
stochastic programming to include future uncertainties in the analysis. Details of model
formulation, results and sensitivity analysis are described here. The second variant uses an
innovative approach to simulate price sensitive demands within a linear formulation. The
analysis incorporating future uncertainties suggests that it is prudent to reduce carbon emission
in anticipation of a global regime in future. Modelling with price elastic demands estimates up
to ten percent reduction in carbon emission due to reduced demands, under a severe carbon
tax.

1. Introduction
Climate change has made environment an integral part of long-term energy planning.
Mathematical models are frequently used for policy analysis in this complex system. Energy-
environment modelling has to deal with a number of future uncertainties. Some arising out of
the complexities in the climate change process, and others due to the long planning horizons
that must be considered. Usually a scenario approach is taken and different possible futures are
examined independent of one another. While this approach is useful for broad long-term
conclusions, it has severe limitations for immediate operational decisions, as different scenario
results may recommend different actions. This paper describes an application of stochastic
programming to incorporate future uncertainties in long-term energy-environment modelling.

Detailed technology evaluation models like the MARKAL model [1] often ignore the
macroeconomic impacts of implementing carbon mitigation, mainly in terms of demand
reductions induced by increased energy prices. This paper also includes analysis based on an
innovative approach to simulate price sensitive demands within a linear formulation.

The modelling innovations described in this paper have been done on the Indian MARKAL
(IM) model [2,3,4]. The MARKAL approach is briefly summarised in section 2. Section 3 has a
detailed description of the formulation and results of the stochastic Indian MARKAL
(stochastic IM). The elastic Indian MARKAL (elastic IM) is described in section 4. Section 5
concludes this paper.

2. The MARKAL Approach
MARKAL is a large scale technology oriented activity analysis model, integrating the supply
and end-use sectors of an economy, with emphasis on the description of energy related sub-
sectors. The model has nine time periods of five years each (thus covering the 45 year span
from 1993 to 2038), and utilises three variables for each technology represented, i.e. the



Page 3

investment, the capacity, and the level of activity of the technology, at each time period (at
period 1, the actual installed capacities of all technologies are imposed, thus constraining
MARKAL to exactly represent the real system being modelled). MARKAL computes a
dynamic, partial equilibrium on energy markets by minimising a single objective function
which is the system's discounted total cost (the equilibrium is partial rather than general, since
MARKAL does not include links with other macroeconomic variables, such as aggregate
savings, consumption etc.). The system's cost includes investment and operations and
maintenance costs for all technologies, plus procurement costs for all imported fuels, minus the
revenue from exported fuels, minus the salvage value of all residual technologies at the end of
the horizon. The model satisfies all important constraints of an energy system, such as flow
conservation, satisfaction of demands, conservation of investments, peak-electricity constraints,
capacity limits, and many others. In addition, MARKAL allows the optional accounting and/or
constraining of emissions of pollutants from all technologies present in the model, by means of
emission coefficients and of special constraints (alternatively, one may impose emission taxes
rather than constraints). In order to simultaneously respect these constraints and minimise
system cost, MARKAL uses optimisation (Linear Programming).

3. Stochastic Indian MARKAL
Stochastic Models in Energy Planning
In the context of energy-environment systems, stochastic modelling has been extensively used
to study the energy resource extraction process [5,6,7,8] and optimizing the electricity
generation process [9,10,11,12]. Studies of socio-economic impacts of the uncertain outcomes
of global warming have also used stochastic models [13,14,15]. A model for stochastic power
generation planning problem was presented with a simple application in Louveaux and Smeers
[16].

A two-step model for robustness analysis in energy planning was suggested in Wene [17]. A
comprehensive description of the method and its application can be found in Larsson and Wene
[18] and Larsson [19]. This method provided for assessing the efficiency and robustness of
exogenously determined alternative strategies.

Reports on formal inclusion of future uncertainties in long-term energy-environment modelling
are scant. A similar problem has also been addressed with multi-stage stochastic programming
[20,21].

3.1 The Two-Stage Recourse Problem
Our formulation is based on the two-stage technique proposed by Dantzig [22], and later
extended by Wets [23], as the recourse problem. Consider the following general linear program:

0≥
≥

x

bAx

toSubject

cxMinimize

The two-stage recourse problem formulation allows the elements of c, A and b to be random
numbers with discreet distributions. Each combination of different c, A and b is defined as a
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realization. In each realization, there is a choice between satisfying the constraints with the
regular decisions, x, or through recourse actions. Of course the recourse actions have associated
penalty costs, the expected value of which is minimized along with the expected value of cx.
Detailed mathematical description of the recourse problem formulation, as applied in the
current problem, is given in Appendix A.

In general the recourse penalties are non-linear convex† cost functions which appear in the
objective function. These non-linear cost functions have been constructed as 3-step linear
functions in implementing this formulation.

The Uncertainties
Two primary (uncertain) factors affecting long-term energy-environment policy are the end-use
energy demand, and the carbon mitigation effort. These uncertainties have been represented by
those in macroeconomic growth, and tax on carbon emission, respectively. Three levels of each
have been considered.
Growth Scenarios: The High Growth Scenario assumes a compound annual rate of growth
(CARG) of 5% for the period 1995-2035. It starts at 6.25% in 1995 and saturates at 2.1% by the
year 2100. Medium scenario assumes a CARG of 4.5%, starting at 5.5% and saturating at 2%.
Low Scenario CARG is 4%, starting at 4.75% and saturating at 1.9%. The above assumptions
are based on the observed GDP trends (Table 1) and projections of some other studies [24,25].

Table 1 GDP Trends
Period 1960-70 1970-80 1980-90 1950-90
CARG (%) 3.48 3.58 5.03 4.02
Source: Basic Statistics, CMIE, 1994.

Carbon Tax Scenarios: These are based on the proposals being considered by the IPCC
[26,27,28], which is the apex body exploring a global policy to deal with the issue of climate
change. The highest tax trajectory follows from the global efforts to stabilize concentration of
carbon in the atmosphere at the 1990 level. The global carbon tax trajectory corresponding to
stabilization is assumed as derived by a global macroeconomic model analysis [29]. The
Reference tax trajectory has been put at 25% level of the stabilization tax in all time periods.

Carbon Tax Scenarios
1. Stabilization Tax (probability = 0.25)
2. Reference Tax (probability = 0.50)
3. Zero Tax (probability = 0.25)

Growth Scenarios
1. High Growth (probability = 0.25)
2. Reference Growth (probability = 0.50)
3. Low Growth (probability = 0.25)

The probabilities have been assigned so as to reflect a higher confidence in the reference
scenario, than the extreme ones. As there is no firm basis of estimating these probabilities, we
have included a sensitivity analysis, which is discussed in section 3.4.
                                                

    †  The recourse actions are ad-hoc measures, which will come at an increasing cost.
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he three recourse levels represent different classes of recourse actions. C
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IM

 solutions under different tax scenarios have been used to determ
ine the recourse penalties

for the three carbon tax scenarios under consideration. In the reference stochastic case, the three
steps of recourse actions for each end-use dem
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th scenario (over the reference case), and the second level recourse can m
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ade in the objective function: F
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accounting for the carbon tax is replaced by the expected cost of carbon tax; and second, the
expected cost of recourse action penalties is added to the objective function. T

he penalty costs
are broken into non-energy and fuel costs. F
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ponents are represented by step-
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ise linear functions.
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3.3 R
esults

R
esults of the stochastic IM

 show
 that even in the initial periods, it is optim

al to build excess
energy supply capacity in anticipation of a higher m

acroeconom
ic grow

th. F
urther, proportions

of coal and natural gas in the aggregate energy supply decrease and increase respectively. T
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clearly indicates that the probable occurrence of high levels of carbon tax in later periods has a
distinct influence on the com

position of energy supply in the im
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ediate future.
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esults of the stochastic IM
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ith those of the stabilization tax and high
grow

th scenarios of the standard IM
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hese scenarios have been chosen because, for increases
in aggregate energy supply levels (
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th effects), the high grow
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 results. S
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th trajectory in the initial periods. T
he proportion of natural gas increases and those of coal

and oil decrease to confirm
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ilar trend is observed in the electricity

generation sector. T
here is an increase in aggregate generation capacity w

ith an increase in the
proportion of gas based technologies.
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4. Elastic Indian MARKAL
The carbon mitigation instruments increase the cost of various energy services. This imposes a
significant strain on different end-use sectors of the economy. In this section, a variant of the
standard version, the Elastic IM has been used to analyse the impact of carbon mitigation
instruments on the energy system with price sensitive end-use demands. The formulation of this
model is based on that of the MARKAL-ED [31].

Price elastic demands have been used in bottom-up energy models earlier. For example, price
elasticity of demands was considered in the PIES model [32]. But as PIES is an energy supply
model, the demand was specified at the fuel level rather than the end-use level, as it has been
done in the standard IM and MARAKL-ED. MARKAL-MACRO [33] incorporates the price
sensitivity of end-use demands but has a single elasticity coefficient for all end-use sectors.
MARKAL-ED can incorporate variations in price elasticities across different end-use sectors.

4.1 Model Formulation and Solution
The deterministic right hand side of the demand constraints has been replaced by a price
sensitive demand function, given below:
D p Kp

D p D
p

p

e

e

( )

( )

=

=








−

−

0
0

where, D(p) is the price sensitive end-use demand, p is the price and e is the own price elasticity
of demand D(p). (D0, p0) is a known point on the demand curve. This is implemented through
changes in the objective function and the demand constraint, which are described in Appendix
C.

Only a price increase is considered because the primary purpose of this formulation is to
examine the impact of carbon mitigation measures, which increase energy prices. The
maximum possible demand reduction has been assumed to be twenty percent of the reference
scenario demand level. This has been derived from a macroeconomic study of carbon mitigation
scenarios for India [34], which predicts a GDP loss of up to fourteen percent under the
stabilization tax scenario. This translates into a twenty percent decrease in energy demand with
the GDP elasticity of energy demand equal to 1.4.

The demand curve has been incorporated by adding a dummy supply in the end-use demand
constraints. The dummy supply does not consume any energy resources, and can supply a
maximum of twenty percent of the reference scenario demand.

The non-linear dummy supply function has been approximated by a 5-step linear function using
5 different dummy technologies. Each technology is offered with an upper bound of D0/25,
where D0 is the reference case demand. Each technology incurs an annual cost per unit of
demand met, which is evaluated based on the demand equation and the shadow price of the
demand constraint under reference scenario.

With the above transformation of the dummy supply function, the problem can be solved within
the standard IM framework. The problem size is 5,317 variables and 3,628 constraints for 5
dummy technologies each in 7 end-use demand categories. There is no significant change in
computational time over the standard IM.
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The price elasticity of demands
Most markets in India are in a state of non-equilibrium because of a constrained supply and
administered prices. Thus, demand is greatly influenced by the supply. Over the years, both
supply and demand have increased along with the prices. Due to this reason, an econometric
analysis often yields negative price elasticities of demand. These elasticities will gradually
assume positive values with the process of economic development. For examining the impact of
carbon mitigation instruments, it has been assumed that the elasticities are close to zero in the
year 1995 and saturate at 0.5 by 2050, following an 'S' curve pattern. The same trend of
elasticities has been assumed for all seven end-uses under consideration. The end-uses are given
in Figure 5.

4.2 Results
The different end-use demands reduce from 4 to 20 percent in response to carbon tax.
Percentage reduction in demand is shown in Figure 5. There is a wide variation in reduction
despite the fact that each end-use has been assumed to have the same price elasticity. This has
happened because of the difference in availability of low carbon technological options to the
various demand categories. There is an increase in the percentage reduction across time periods
because (a) the price elasticity increases in later periods, and (b) the energy prices are higher due
to higher carbon tax levels in the later periods. Demand reduction contributes up to a maximum
of ten percent to the overall carbon emission reduction under the stabilization tax scenario.
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Figure 5  PERCENTAGE LOSS IN END-USE DEMANDS

5. Conclusion
In this paper,  we have shown a new way to accommodate future uncertainties in energy-
environment planning using the two-stage recourse problem formulation. The formulation
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has been reduced to a linear form so that  it is possible to handle even large models easily.
This approach is particularly suitable for developing countries, where planning for shortages
is an every day reality. The recourse actions make it possible to produce a base plan which
would actually fall short of the requirements under some scenarios. This cannot be done with
the multi-stage stochastic programming approach  [20, 21] for example, where the options
available within the model have to deliver a feasible solution under all scenarios. Including
uncertainties in his manner can make the results of such long term technology evaluation
models more relevant for the policy makers.

The elastic IM confirms that  a part of the macroeconomic impact of carbon taxes can be
easily captured in a detailed bottom-up analysis, within a linear formulation, as first
suggested by Loulou [25]. Further, it gives a useful estimate of emission reduction due to
demand loss under severe carbon taxes.
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Appendix A: The Two-Stage Recourse Problem

Consider the following general stochastic linear program:

xczMinimize T=
Eq. 1

where, c  = (c 1, c 2, .. c n)
T, and x  = (x 1, x 2, .. x n) are the decision

variables,

0

:

≥
=
=

x

gTx

bAx

toSubject

Eq. 2
A = (a ij ) is an m x n matrix, b = (b 1, b 2, .. b m)

T, T is a deterministic r  x
n matrix and g is a deterministic column vector. Elements of vectors b, c
and the rows of A are random variables with known probability
distributions. The fixed constraints Tx = g  are assumed to have a feasible
solution.

Let

y b a x

i m

i i ij j
j

n

= −

∀ =
=

∑
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1,..,
Eq. 3

Let f i  be the penalty associated with the discrepancy y i . Then, the second
stage of the formulation is given by (4),

Minimise f yi i
i

m

=
∑

1

Eq. 4
subject to (3), where b, x , A and f =(f 1,..,f m)

T are known. The final two-
stage program is given as (5).

Minimise E c x f y y

s t

Iy Iy b Ax

Tx g
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T

y

T    
y+

[ min ( )]

. .

, ,

,
+ +

− = −
=

≥

−

+ −

+ −

+ − 0
Eq. 5

where, E denotes the expected value.

In the context of the problem at hand, the penalty costs associated with
the discrepancies (recourses) comprise energy and non-energy components.
The energy component is specific to the fuel used by a recourse whereas the
non-energy component is recourse specific. The total recourse fuel usage is
given in (6),

RFC y RFU

j s

ji i
i

m

j
=
∑ =

∀ =
1

1,..,
Eq. 6

where, RFC is an ( mxs) matrix with RFCij  is the consumption coefficient of
fuel j  for recourse i . RFUj =(RFU1,...,RFU s) is the total supply of recourse
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fuels. Thus, the total penalty cost associated with the recourses is given
by (7),

E f y RFC y FCi i
i

m

ij i
j

s

j
i

m

[
= ==
∑ ∑∑+

1 11

Eq. 7
where FCj  is the unit cost of fuel j .
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Appendix B: Model Formulation

Let the end-use demands ( demandk(t) ) and carbon tax ( ctax(t) ) be random
variables with discreet probability distributions. Further, let the joint
probability distribution be characterized by a random vector z given in
equation (8).

ζ l l
k
l

l

l

l

L

ctax t demand t

p

p

l L k DM t T

=

≥

=

∀ = ∈ ∈
=
∑

( ( ), ( ))

,.., , ,

0

1

1
1

Eq. 8
Sets

DM = Class of all end-use demands
DMD = Class of all end-use demand technologies (a subset of

class TCH)
DMD = Subset of the end-use technologies that can satisfy

end-use demand k  ∈ DM
ELA = Class of all electricity producing technologies
ENC = Class of all energy carriers, excluding electricity
GRD = Set of grades of technologies/energy sources
PRC = Class of process technologies
T = Set of time periods
TCH = Set of all technologies
u=(1,...,U) = Price levels
W = Set of extraction and renewable sources
Y = Set of daily divisions ( d refers to day division, n

to night division)

Parameters

a = Annual discount rate
af i (t) = Availability factor of technology i  in time period t
cf i (t) = Average utilization factor of installed capacity of

demand device i  in period t
cost ks (t) = Unit cost of energy carrier k  from source s  at time

period t
crbcoeff i (t) = Carbon emission per unit activity of energy supply

technologies and per unit capacity of demand
technologies in time period t

ctax(t) Carbon tax in time period t
demandk(t) = Useful Energy demand of demand category k , in time

period t
epk i (t) = Fraction of the consumption of electricity by process

technology i  which is to be included in the peaking
relation at period t

er(t) = Required capacity reserve for the electricity grid in
time period t

fixom i (t) = Annual fixed operating and maintenance cost
associated with the installed capacity of technology
i  in time period t

fo i = Forced outage of electricity generation technology i
fr j(i)y = Fraction of demand from demand category J(i) which

occurs during time of day y
inp ki (t) = Input of energy carrier k  per unit of activity of

technology i  (for non-demand technologies)
invcost i (t) = Unit investment cost of technology  i  at time period
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t
j(i) = Function indicating the demand sector j ( i ) ∈DM to

which demand technology i  belongs
l i = Lifetime of technology  i
n = Number of years in each time period
η(t) = Transmission and distribution efficiency of the grid

in time period t
out ki (t) = Output of energy carrier k  per unit of activity of

technology i (for non demand technologies) in period
t

pk i (t) = Fraction of installed capacity of generating plant i
available to meet peak

price ks (t) = Unit price of energy carrier k  to source s  at time
period t

qy = Fraction of the year occurring in time of day y
resid i (t) = Capacity installed before start of optimization

available for use in period t  and for which no
investment cost is charged

rfbound j
u(t) = Upper bound on the supply of resource fuel j , at

price level u, in time period t
rfc jk

r (t) = Amount of fuel j , used for unit activity of recourse
k , at level r , in time period t

rfcost j
lu (t) = Unit price of recourse fuel j , at price level u, in

period t  with ctax l ( t )
t o = Max {1, t - l i  + 1}
ui = Factor converting units of capacity to units of

annual production
varom i (t) = Annual variable operating maintenance cost of the

non-demand technology i  in time period t
ybound k

r (t) = Upper bound for recourse k , at level r , in time
period t

Decision Variables

CAPtch,t = Capacity for technology TCH during time period t
Ci (t) = Capacity of technology i  in period t
CRBEMM(t) = Total carbon emission from the energy system in time

period t
EXPks (t) = Export of energy carrier k  to destination s  in period

t
I i (t) = New capacity of technology i  installed at beginning

of period t
IMPks (t) = Import of energy carrier k  from source s  in period t
MINks (t) = Supply of primary energy form k from extraction or

renewable source s in time period t
Pi (t) = Activity of technology i  in period t
Piy (t) = Electricity production by technology i  in period t

for time of day y
RFSUPj

lu (t) = Amount of recourse fuel j  supplied at price level u,
in time period t  and realization l

Yk
lr (t) = Recourse action for demand k , at level r , in time

period t
YNk

l (t) = Negative recourse action for demand k , in time period
t
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Stochastic Indian MARKAL Model:
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Some parts of the objective function and equations are briefly described
below.

Objective Function(9-12) :  The first term added to the objective function
(10) represents the discounted sum of expected value of recourse penalties.
f k

lr (t) is the non-energy cost associated with unit activity of recourse
Yk

lr (t) . The second expression (11) represents the benefit given to the
system in case of a surplus capacity. This is to account for the excess
consumption in case of a lower demand realization. fn k

lr (t)  is the fuel
cost associated with unit activity of negative recourse YNk

lr (t) . Expression
(12) represents the expected cost of recourse fuel supply, which is a
function of the volume of supply.

Stochastic Demand Constraint (21) : One constraint for each end-use demand
in each realization ensures that the sum of reference case capacities and
recourse actions, are at least equal to the demand in each realization.
Yk

lr (t) is the recourse action for demand k , level r , in realization l , in
time period t . YNk

l (t)  is the negative recourse for demand k , in
realization l , for time period t . R is the set of possible levels of
recourse actions.
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Recourse Action Bounds (22) :  The recourse costs have been considered at
three different levels. Equation (22) puts upper bounds on individual
recourse levels. ybound k

r (t) is the upper bound for recourse k , at level r ,
in time period t .

Equation (23), ensures that in any realization, only one of recourse
actions (positive or negative) assume a non-zero value.

Recourse Fuel Balance Constraints (Equation 24) : These constraints
aggregate each energy form across all recourse actions in each realization.
rfc jk

r (t) is the amount of fuel j , used for unit activity of recourse k , at
level r , in time period t . RFj

l  is the aggregate consumption of recourse
fuel j  in realization l .
The non-linear recourse fuel costs have been approximated by a three step
linear function, as shown in Equations (25) to (27).
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Equation (25) expresses the aggregate supply of each recourse fuel as the
sum of three different grades having deterministic costs rfcost j

u. Index u
represents the price level. Equation (26) puts bounds on individual grades
to represent a step function. The expression (12) in the objective function
is replaced by (27) above.
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Appendix C: Elastic Indian MARKAL Formulation

The demand constraint of Elastic IM is given below:
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where, DVkt  is the dual value of the demand constraint for end-use category
k , in time period t . The part of the demand met by dummy supply is
considered as lost demand, and the total cost of dummy supply represents
the economic cost of lost demand.

The non-linear supply function is represented by step-wise linear function,
s
ktDS , where the index s represents the steps.  Then, the demand constraint
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where, kD is the reference case demand. Thus the total cost of lost demand

included in the objective function is:
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