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Goals of EMP/VTMX to be addressed

1. Increase our understanding of Mechanisms Responsible for
Vertical Transport and Mixing

Science questions addressed:
Look at dominant balances of downslope flows
Look at cold pool destructions

2. Improve our ability to measure quantities required for our
understanding

3. Develop improved treatments of vertical transport and mixing
for use in conceptual models.

Science questions addressed:
Simple theoretical arguments

Test of models
Propose new models
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ASU Contribution to the VTMX Program

» Theoretical Modeling » Laboratory Experiments
® Down-slope and up-slope flows ® Down-slope (simple slopes)
® Transition period ® Up-slope flows (simple slopes)
® Initiation of up-slope flow ® Basin (pooling and slope flows)

® Transition (on a simple slope)

» VTMX Field Program (Limited) > Analysis of PAFEX Data

® Sonic Anemometers (turbulence) ® Data taken during 1998 (NSF)
experiments (January-February,

® Cup anemometers
July-September)

® Tethered balloons (2) — profiling (T, V) * Transiti iod
ransition perioas

® Radiation (in and out)

® Aerosol measurements
(TEOM/Streaker/Dustrack)
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Downslope — Field Observations
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Downslope Flow — Governing Equations

Momentum Equation

by _ 29 +U s +Wd—Lf= —a,Mo+07/07

Dt Jt X ki

Where
Ab=-gA8/8(0) (Ab<O0 for positively buoyant or less dense fluid)

and

NO=6(2)-6.(2=h)

The temperature difference between the air in the current and in the externa
region at just outside the boundary layer
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Downslope Flow — Governing Equations

Temperature difference (expressed as buoyancy differences)

Dob_Jmb b Ob OF, E, 2
ot gt Doz Was T T AbraN:U,

Where
OF 102=(g/8(0){0F,/02)
(0F,/02z being the heat flux divergence at the surface)

Ey (A9) isaveragerate of mixing with the external fluid

H

( E, =dh, /dt being the boundary entrainment velocity)

—a,(06:-102)U,, istherate of temperature rise of fluid elements caused by
their downward displacement (Fleagle 1950)
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Downslope Flow — Theoretical Model — Periodicity

Linearized governing equations with neglected flux divergence and the
entrainment-rate,

i,—LtJ~—aHAb+0r/62 %b ~a,N2U,,

0°U

" +a/;NZU =0

have oscillatory solution with the frequency
aw~a,Ng

or period
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Radiation [W/m?]

Pulsation of downslope flow
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VTMX - Spectra
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Pulsation of downslope flow

Wind Speed [m/s]
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Parameterization of Vertical Mixing
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Slope Discontinuity

higher (elevated)
dope

hydraulic adjustment

lower dope
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Idealized Topography

Synoptic flow fsli(r)l\ll(v X f%ﬁ%
Y hsﬁ))
DU _ 9V ,y2Y swiY < —g,ab+ar/a2 i
Dt dt o"x Jdz
V*
DAb_Jbb,  dMb .\ b OF, E, b
= +U —~ + N R
ot - ot ax oz T ap plPrauNeU, 7
%//
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)(\,w
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Valley floor lower (elevatlon) gentle slope
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Slope Length — Slope Site
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Slope Length — ACS

o, rAim
IO -
1A =
A TR =
o 1A0n =
Okin 200kxr 200km AMEkn SMkn S0k TD0ERnN BLEG ki

360 | L L Il | L L L | L L L | L L L | L L L

270

180

90

Wind Direction (Deg.)

0 T T T T L T T T T T T T T T
274 o 6275 © e"276 © ¢277 ©

Time (Jday, LST)

Arizona State University
Environmental Fluid Dynamics Program



Downslope — Field Data
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Downslope — Theory vs. Field

UZ =A.a, AbL,

. ACS
Ac (bin averaged) y=-19.887x+ 1.4761

R?=0.4638

Slope Site
y=-19.341x+ 1.3412

R*=0.6382

& ACS

m Slope Site

Linear (ACS)
Linear (Slope Site)
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Downslope Flow — Theoretical Model — Layer Thickness
Using energy arguments (Turner 1973, Manins & Sawford 1979)

th — hH —_ urms
d " dk (Abh,/u)

| ntegrating,

Replacing Uj =1, a, AbLy, |

hEI ~aHACLI2-I (urms/UH )3
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Layer Depth — Nappo and Rao
Katabatic |layer depth according to Nappo and Rao (1987):
h, =0.073(sinB)?%s

where £isthe slope angle and s the along-slope distance
measured downward
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VTMX =Site Surrounding

Site characteristics:
a, =0.07rad =4°

L, =4000m

No direct obstacles for
katabatic current.
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Stability
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Three categories of stability:

Weak N. <0.04s™
Moderate  0.04s™ < N_ <0.08s™

Strong NE >(0.08s™
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VTMX — Layer thickness
i ~ @ ALy (Ups /U, )
Observed katabatic layer thicknessisin therange of 15- 100 m
Whole period h, =40m

Wesk Stability h, = 70m

Moderate Stability h, =40m

Strong Stability h, =20m
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Layer Depth — Nappo and Rao

h, =0.073(sinB)?3s

Woasatch
Equivalent slope Mountain
h, =130m &
Averaged slope
h, =90m

Local slope £, =101 Observed
hy =40m h, =15-100m
B =4
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Cold Pool Breakup
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Reproduced from Mountain Meteorology (2000), and Observations of thermally developed wind systems in mountainous terrain (1990). Courtesy

of Dr. Whiteman, PNNL.
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Experimental Modeling of the Cold Pool Destruction

e-D tank with
length of 155cm
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Different Flows Observed During Cold Pool Destruction

Simple slope flow followed by recirculation

Slope flow followed by recirculation plus
layer “thickening” at the valley bottom

Same as previous plus horizontal intrusions
in stable core

No large recirculation — all compensation of
mass is via intrusions at different levels
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Governing Parameters For the Cold Pool Destruction (2D)

Slope Angle -B @
Initial Stability (stratification) - N

Heat Flux (buoyancy flux) -q, N <

Inversion Height -h %o

Combination of dimensionless parameters:

32
B and B:Nh
9,
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Assumption: B determines the type of the Cold Pool destruction

N °h?

Low B

B =

Parameter B

Uo

Low N, Lower q,

P Low N, High q,

High N, Higher q,

7o (enoy | NEAFIUX do
Run# |N"2 (s"-2) kWIM2) | (mro/sn3) Raf B
35 0.278 1.42 7.21E-07 | 5.09E+10| 2166
36 0.157 0.52 2.66E-07 | 1.88E+10| 2497
40 0.181 5.68 2.89E-06 | 2.04E+11 943
42 0.287 11.36 | 5.78E-06 |4.08E+11 939
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Flow Dependence

Angle | B, B ax

100 107 2497
20° 212 8198
30° 24 5564

Low B regime

High B regime

B.=1000-2000
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Warm Air Advection
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Temperature and Gradient Contours
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Flow Rates and Pool Growth

Flow in:
9,183,000 — 16,529,000 m3/s

If everything flows out, necessary
velocity towards lake should be :

10.5-19 m/s !

Velocity towards lake ranges from:
25-5m/s

Difference between flow in and flow
out creates the cold pool. Rate of
pool growth is estimated in the
range of:

0.6 -1.3cm/s

(100 m increase in depthin 2 - 4.5
hours)
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Estimated Pool Height

Ground-Based 1’?"

Temperature g

Accumulation of the cold

Very stable, due to the air due to the drainage
radiative cooling flow
50 -100 m 300 -700 m

Total expected pool depth 350 — 800 m
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Height AGL (m)

Expected Cold Pool Destruction Mechanism SLC Valley

31,2
I3=Nh
o

Potential Temperature Profile: VTMX
Starting on 10/08 (LT)

Bouancy Flux After Sun Rise
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Expected Cold Pool Destruction Mechanism SLC Valley

B =1000
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Summary

-Dynamics of downslope flows, in particular slope discontinuity were studied
-Existing parameterizations were checked and new were proposed

-Velocity and layer thickness were measured and compared with existing
theory / new formulations

-Cold pool formation and destruction were studied using
-Laboratory experiments

-VTMX data

-Pooling mechanisms for VTMX was proposed based on laboratory experiments
and simple estimates based on downslope velocities

-Warm advection event was noted

-MMS5 runs are underway
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