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Goals of EMP/VTMX to be addressed

1. Increase our understanding of Mechanisms Responsible for 
Vertical Transport and Mixing
Science questions addressed:
• Look at dominant balances of downslope flows
• Look at cold pool destructions

2. Improve our ability to measure quantities required for our 
understanding

3. Develop improved treatments of vertical transport and mixing 
for use in conceptual models.
Science questions addressed:
• Simple theoretical arguments
• Test of models
• Propose new models
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ASU Contribution to the VTMX Program

! Theoretical Modeling
• Down-slope and up-slope flows

• Transition period

• Initiation of up-slope flow

! Laboratory Experiments
• Down-slope (simple slopes)

• Up-slope flows (simple slopes)

• Basin (pooling and slope flows)

• Transition (on a simple slope)

! VTMX Field Program (Limited)
• Sonic Anemometers (turbulence)

• Cup anemometers

• Tethered balloons (2) – profiling (T, V)

• Radiation (in and out)

• Aerosol measurements 
(TEOM/Streaker/Dustrack)

! Analysis of PAFEX Data
• Data taken during 1998 (NSF) 
experiments (January-February, 
July-September)

• Transition periods
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Downslope – Field Observations

Slope Site
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Tower
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Balloons
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Downslope Flow – Governing Equations
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Where

( 0<∆b for positively buoyant or less dense fluid)

The temperature difference  between the air in the current and in the external 
region at  just outside the boundary layer
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Downslope Flow – Governing Equations

Temperature difference (expressed as buoyancy differences)
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Where
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( zF ˆ/ ∂∂ θ being the heat flux divergence at the surface)
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h
E is average rate of mixing with the external fluid

dtdhE Hb /=( being the boundary entrainment velocity)

HEH Uz)ˆ/( ∂∂− θα is the rate of temperature rise of fluid elements caused by 
their downward displacement (Fleagle 1950)
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Downslope Flow – Theoretical Model – Periodicity

Linearized governing equations with neglected flux divergence and the 
entrainment-rate,
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Pulsation of downslope flow
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VTMX - Spectra

Peak corresponds to period min23≈T
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Pulsation of downslope flow

Down-slope Wind
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Parameterization of Vertical Mixing
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Rif vs. Rig
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Slope Discontinuity
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Idealized Topography

Valley floor lower (elevation) gentle slope

higher
(elevation) steep

slope

(open terrain)
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Slope Length – Slope Site

Flow path assumed by Dr. Whiteman, 
PNNL

West-East Cross-section
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Slope Length – ACS
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Downslope – Field Data
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Downslope – Theory vs. Field

HHcH LbU ∆= αλ2

λλλλc (bin averaged) ACS
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Downslope Flow – Theoretical Model – Layer Thickness
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Layer Depth – Nappo and Rao

Katabatic layer depth according to Nappo and Rao (1987):

( ) shI
32sin073.0 β≈

where β is the slope angle and s the along-slope distance 
measured downward
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VTMX –Site Surrounding

Site characteristics:

o
H rad 407.0 ==α

mLH 4000=

No direct obstacles for 
katabatic current.
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Stability

Buoyancy frequency,

1122.0  to018.0 −= sNE

Three categories of stability:
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VTMX – Layer thickness
( )322 /~ HrmsHCHH UuLh λα

Whole period

Weak Stability

Moderate Stability

Strong Stability

mhH 40≈

mhH 70≈

mhH 40≈

mhH 20≈

Observed  katabatic layer thickness is in the range of 15 - 100 m
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Layer Depth – Nappo and Rao

Local slope
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Cold Pool Breakup

Reproduced from Mountain Meteorology (2000), and Observations of thermally developed wind systems in mountainous terrain (1990). Courtesy 
of Dr. Whiteman, PNNL.
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Experimental Modeling of the Cold Pool Destruction

β
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Different Flows Observed During Cold Pool Destruction

Simple slope flow followed by recirculation

Slope flow followed by recirculation plus 
layer “thickening”  at the valley bottom

Same as previous plus horizontal intrusions 
in stable core

No large recirculation – all compensation of 
mass is via intrusions at different levels
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Governing Parameters For the Cold Pool Destruction (2D)

Initial Stability (stratification) - N

Slope Angle - β

Heat Flux (buoyancy flux) - qo

Inversion Height - h

Combination of dimensionless parameters:

β and
oq
hNB
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Parameter B

oq
hNB

23

=

Assumption: B determines the type of the Cold Pool destruction

High B
High N, Low qo

Low N, Lower qo

Low B
Low N, High qo

High N, Higher qo

Run# N^2 (s -̂2) heatFlux 
(kW/m^2)

q0 

(m^2/s^3)
Raf B

35 0.278 1.42 7.21E-07 5.09E+10 2166
36 0.157 0.52 2.66E-07 1.88E+10 2497
40 0.181 5.68 2.89E-06 2.04E+11 943
42 0.287 11.36 5.78E-06 4.08E+11 939
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Flow Dependence

Low B regime

High B regime

Bc=1000-2000

Lower values for smaller slope angles

819821220o

55642430o

249710710o

BmaxBminAngle
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October 16th, 2000. 6 PM Local Time

SLC

Warm Air Advection

October 17th, 2000. 6 Pm Local Time

SLC
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Temperature and Gradient Contours
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Flow Rates and Pool Growth

Flow in:

9,183,000 – 16,529,000 m3/s

If everything flows out, necessary 
velocity towards lake should be :

10.5-19 m/s !

PoolingVelocity towards lake ranges from:

2.5 – 5 m/s

Difference between  flow in and flow 
out creates the cold pool. Rate of 
pool growth is estimated in the 
range of:

0.6 – 1.3 cm/s

(100 m increase in depth in 2 – 4.5 
hours)



Arizona State University                                        
Environmental Fluid Dynamics Program

Estimated Pool Height

Very stable, due to the 
radiative cooling

50 –100 m

Accumulation of the cold 
air due to the drainage 
flow

300 – 700 m

Total expected pool depth 350 – 800 m
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Expected Cold Pool Destruction Mechanism SLC Valley

Bouancy Flux After Sun Rise

q0 =1.4*10^-3
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Expected Cold Pool Destruction Mechanism SLC Valley

1000≈B
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Summary

-Dynamics of downslope flows, in particular slope discontinuity were studied

-Existing parameterizations were checked and new were proposed

-Velocity and layer thickness were measured and compared with existing 
theory / new formulations

-Cold pool formation and destruction were studied using

-Laboratory experiments

-VTMX data

-Pooling mechanisms for VTMX was proposed based on laboratory experiments 
and simple estimates based on downslope velocities

-Warm advection event was noted

-MM5 runs are underway


