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As stability increases turbulence becomes more
intermittent.

Intermittent turbulence is not described well in
current theories.

Parameterizations in mesoscale models are problematic.
Goals:
Characterize features of intermittent turbulence.

Develop a semi-empirical approach to parameterization
of intermittent turbulent sensible heat fluxes.
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data sources:

location height(s) sampling frequency (Hz)
Beaumont 7m 10
Smileyberg 2 m 20

Leon 5, 10 m 20



Heat flux (mKI/s)
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CASES99 and SLC data
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CASES99 and SLC data
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CASES99 and SLC data
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CASES99 and SLC data
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Hanford tower




Hanford terrain




Hanford data
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Sample least squares fits to u, v, and theta

F(z)= A + BiIn(z) + Cz

= 3 4 5284 ZRH5 2B 257 2858 280 290
Velocit}f cor‘r‘lpor‘ler‘lt (r‘r‘l/s} Fotential Temperﬂture (If(j




Median, 25th and 75th percentile fluxes as fn of gradient Ri
(Hanford data)
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Median, 25th and 75th percentile turbulent fraction as
fn of gradient Ri (Hanford data)

0190 I I IIIIII| I I I T T TTT

L 2

0.80

0.70

0.60

0.20

0.40

0.30

b
O
=
O
0
L
Lo
o
&
-
D
>
O
-
>
|_
-
S,
ae
@
=

0.20

0.10

0.00
.01




Conclusions

Turbulent fraction and average flux are linearly
related for fluxes <-0.020 mK/s for a range of
thresholds and event durations.

Turbulent fraction and average flux are (roughly)
predictable from gradient Ri.

Scatter is large and a good normalization is being
sought.

The average flux in an event and the average flux in a
gap vary smoothly with turbulent fraction.

Semi-empirical heat flux parameterization may be
possible.



